IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v17y2023i3p547-579_7.html
   My bibliography  Save this article

How do empirical estimators of popular risk measures impact pro-cyclicality?

Author

Listed:
  • Bräutigam, Marcel
  • Kratz, Marie

Abstract

Risk measurements are clearly central to risk management, in particular for banks, (re)insurance companies, and investment funds. The question of the appropriateness of risk measures for evaluating the risk of financial institutions has been heavily debated, especially after the financial crisis of 2008/2009. Another concern for financial institutions is the pro-cyclicality of risk measurements. In this paper, we extend existing work on the pro-cyclicality of the Value-at-Risk to its main competitors, Expected Shortfall, and Expectile: We compare the pro-cyclicality of historical quantile-based risk estimation, taking into account the market state. To characterise the latter, we propose various estimators of the realised volatility. Considering the family of augmented GARCH(p, q) processes (containing well-known GARCH models and iid models, as special cases), we prove that the strength of pro-cyclicality depends on the three factors: the choice of risk measure and its estimators, the realised volatility estimator and the model considered, but, no matter the choices, the pro-cyclicality is always present. We complement this theoretical analysis by performing simulation studies in the iid case and developing a case study on real data.

Suggested Citation

  • Bräutigam, Marcel & Kratz, Marie, 2023. "How do empirical estimators of popular risk measures impact pro-cyclicality?," Annals of Actuarial Science, Cambridge University Press, vol. 17(3), pages 547-579, November.
  • Handle: RePEc:cup:anacsi:v:17:y:2023:i:3:p:547-579_7
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499523000039/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:17:y:2023:i:3:p:547-579_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.