IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v17y2023i3p459-478_4.html
   My bibliography  Save this article

Impact of combination methods on extreme precipitation projections

Author

Listed:
  • Jessup, Sébastien
  • Mailhot, Mélina
  • Pigeon, Mathieu

Abstract

Climate change is expected to increase the frequency and intensity of extreme weather events. To properly assess the increased economical risk of these events, actuaries can gain in relying on expert models/opinions from multiple different sources, which requires the use of model combination techniques. From non-parametric to Bayesian approaches, different methods rely on varying assumptions potentially leading to very different results. In this paper, we apply multiple model combination methods to an ensemble of 24 experts in a pooling approach and use the differences in outputs from the different combinations to illustrate how one can gain additional insight from using multiple methods. The densities obtained from pooling in Montreal and Quebec City highlight the significant changes in higher quantiles obtained through different combination approaches. Areal reduction factor and quantile projected changes are used to show that consistency, or lack thereof, across approaches reflects the uncertainty of combination methods. This shows how an actuary using multiple expert models should consider more than one combination method to properly assess the impact of climate change on loss distributions, seeing as a single method can lead to overconfidence in projections.

Suggested Citation

  • Jessup, Sébastien & Mailhot, Mélina & Pigeon, Mathieu, 2023. "Impact of combination methods on extreme precipitation projections," Annals of Actuarial Science, Cambridge University Press, vol. 17(3), pages 459-478, November.
  • Handle: RePEc:cup:anacsi:v:17:y:2023:i:3:p:459-478_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S174849952300009X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:17:y:2023:i:3:p:459-478_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.