IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v17y2023i2p243-284_3.html
   My bibliography  Save this article

A Hermite spline approach for modelling population mortality

Author

Listed:
  • Tang, Sixian
  • Li, Jackie
  • Tickle, Leonie

Abstract

One complication in mortality modelling is capturing the impact of risk factors that contribute to mortality differentials between different populations. Evidence has suggested that mortality differentials tend to diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced ages when applied independently to different populations. In recent research, Richards (Scandinavian Actuarial Journal 2020(2), 110–127) proposed a Hermite spline (HS) model that describes the age pattern of mortality differentials using one parameter and circumvents an unreasonable crossover by default. The original HS model was applied to pension data at individual level in the age dimension only. This paper extends the method to model population mortality in both age and period dimensions. Our results indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate mortality forecasts, compared with the Gompertz and P-splines models.

Suggested Citation

  • Tang, Sixian & Li, Jackie & Tickle, Leonie, 2023. "A Hermite spline approach for modelling population mortality," Annals of Actuarial Science, Cambridge University Press, vol. 17(2), pages 243-284, July.
  • Handle: RePEc:cup:anacsi:v:17:y:2023:i:2:p:243-284_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499522000173/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:17:y:2023:i:2:p:243-284_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.