IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i2p394-418_10.html
   My bibliography  Save this article

A practical support vector regression algorithm and kernel function for attritional general insurance loss estimation

Author

Listed:
  • Kwasa, Shadrack
  • Jones, Daniel

Abstract

The aim of the paper is to derive a simple, implementable machine learning method for general insurance losses. An algorithm for learning a general insurance loss triangle is developed and justified. An argument is made for applying support vector regression (SVR) to this learning task (in order to facilitate transparency of the learning method as compared to more “black-box” methods such as deep neural networks), and SVR methodology derived is specifically applied to this learning task. A further argument for preserving the statistical features of the loss data in the SVR machine is made. A bespoke kernel function that preserves the statistical features of the loss data is derived from first principles and called the exponential dispersion family (EDF) kernel. Features of the EDF kernel are explored, and the kernel is applied to an insurance loss estimation exercise for homogeneous risk of three different insurers. Results of the cumulative losses and ultimate losses predicted by the EDF kernel are compared to losses predicted by the radial basis function kernel and the chain-ladder method. A backtest of the developed method is performed. A discussion of the results and their implications follows.

Suggested Citation

  • Kwasa, Shadrack & Jones, Daniel, 2021. "A practical support vector regression algorithm and kernel function for attritional general insurance loss estimation," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 394-418, July.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:394-418_10
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499520000263/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katrien Antonio & Christophe Dutang & Andreas Tsanakas, 2021. "Editorial," Post-Print hal-04748464, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:394-418_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.