IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i2p367-393_9.html
   My bibliography  Save this article

A spatial machine learning model for analysing customers’ lapse behaviour in life insurance

Author

Listed:
  • Hu, Sen
  • O’Hagan, Adrian
  • Sweeney, James
  • Ghahramani, Mohammadhossein

Abstract

Spatial analysis ranges from simple univariate descriptive statistics to complex multivariate analyses and is typically used to investigate spatial patterns or to identify spatially linked consumer behaviours in insurance. This paper investigates if the incorporation of publicly available spatially linked demographic census data at population level is useful in modelling customers’ lapse behaviour (i.e. stopping payment of premiums) in life insurance policies, based on data provided by an insurance company in Ireland. From the insurance company’s perspective, identifying and assessing such lapsing risks in advance permit engagement to prevent such incidents, saving money by re-evaluating customer acquisition channels and improving capital reserve calculation and preparation. Incorporating spatial analysis in lapse modelling is expected to improve lapse prediction. Therefore, a hybrid approach to lapse prediction is proposed – spatial clustering using census data is used to reveal the underlying spatial structure of customers of the Irish life insurer, in conjunction with traditional statistical models for lapse prediction based on the company data. The primary contribution of this work is to consider the spatial characteristics of customers for life insurance lapse behaviour, via the integration of reliable government provided census demographics, which has not been considered previously in actuarial literature. Company decision-makers can use the insights gleaned from this analysis to identify customer subsets to target with personalized promotions to reduce lapse rates, and to reduce overall company risk.

Suggested Citation

  • Hu, Sen & O’Hagan, Adrian & Sweeney, James & Ghahramani, Mohammadhossein, 2021. "A spatial machine learning model for analysing customers’ lapse behaviour in life insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 367-393, July.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:367-393_9
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499520000329/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katrien Antonio & Christophe Dutang & Andreas Tsanakas, 2021. "Editorial," Post-Print hal-04748464, HAL.
    2. Mathias Valla & Xavier Milhaud & Anani Ayodélé Olympio, 2023. "Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategies," Post-Print hal-03903047, HAL.
    3. Mathias Valla & Xavier Milhaud & Anani Ayodélé Olympio, 2023. "Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategy," Working Papers hal-03903047, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:367-393_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.