IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i2p291-317_6.html
   My bibliography  Save this article

Statistical features of persistence and long memory in mortality data

Author

Listed:
  • Peters, Gareth W.
  • Yan, Hongxuan
  • Chan, Jennifer

Abstract

Understanding core statistical properties and data features in mortality data are fundamental to the development of machine learning methods for demographic and actuarial applications of mortality projection. The study of statistical features in such data forms the basis for classification, regression and forecasting tasks. In particular, the understanding of key statistical structure in such data can aid in improving accuracy in undertaking mortality projection and forecasting when constructing life tables. The ability to accurately forecast mortality is a critical aspect for the study of demography, life insurance product design and pricing, pension planning and insurance-based decision risk management. Though many stylised facts of mortality data have been discussed in the literature, we provide evidence for a novel statistical feature that is pervasive in mortality data at a national level that is as yet unexplored. In this regard, we demonstrate in this work a strong evidence for the existence of long memory features in mortality data, and second that such long memory structures display multifractality as a statistical feature that can act as a discriminator of mortality dynamics by age, gender and country. To achieve this, we first outline the way in which we choose to represent the persistence of long memory from an estimator perspective. We make a natural link between a class of long memory features and an attribute of stochastic processes based on fractional Brownian motion. This allows us to use well established estimators for the Hurst exponent to then robustly and accurately study the long memory features of mortality data. We then introduce to mortality analysis the notion from data science known as multifractality. This allows us to study the long memory persistence features of mortality data on different timescales. We demonstrate its accuracy for sample sizes commensurate with national-level age term structure historical mortality records. A series of synthetic studies as well a comprehensive analysis of real mortality death count data are studied in order to demonstrate the pervasiveness of long memory structures in mortality data, both mono-fractal and multifractal functional features are verified to be present as stylised facts of national-level mortality data for most countries and most age groups by gender. We conclude by demonstrating how such features can be used in kernel clustering and mortality model forecasting to improve these actuarial applications.

Suggested Citation

  • Peters, Gareth W. & Yan, Hongxuan & Chan, Jennifer, 2021. "Statistical features of persistence and long memory in mortality data," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 291-317, July.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:291-317_6
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499521000129/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katrien Antonio & Christophe Dutang & Andreas Tsanakas, 2021. "Editorial," Post-Print hal-04748464, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:291-317_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.