IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v12y2018i01p1-22_00.html
   My bibliography  Save this article

A stochastic Expectation–Maximisation (EM) algorithm for construction of mortality tables

Author

Listed:
  • Esparza, Luz Judith R.
  • Baltazar-Larios, Fernando

Abstract

In this paper, we present an extension of the model proposed by Lin & Liu that uses the concept of physiological age to model the ageing process by using phase-type distributions to calculate the probability of death. We propose a finite-state Markov jump process to model the hypothetical ageing process in which it is possible the transition rates between non-consecutive physiological ages. Since the Markov process has only a single absorbing state, the death time follows a phase-type distribution. Thus, to build a mortality table the challenge is to estimate this matrix based on the records of the ageing process. Considering the nature of the data, we consider two cases: having continuous time information of the ageing process, and the more interesting and realistic case, having reports of the process just in determined times. If the ageing process is only observed at discrete time points we have a missing data problem, thus, we use a stochastic Expectation–Maximisation (SEM) algorithm to find the maximum likelihood estimator of the intensity matrix. And in order to do that, we build Markov bridges which are sampled using the Bisection method. The theory is illustrated by a simulation study and used to fit real data.

Suggested Citation

  • Esparza, Luz Judith R. & Baltazar-Larios, Fernando, 2018. "A stochastic Expectation–Maximisation (EM) algorithm for construction of mortality tables," Annals of Actuarial Science, Cambridge University Press, vol. 12(1), pages 1-22, March.
  • Handle: RePEc:cup:anacsi:v:12:y:2018:i:01:p:1-22_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499517000094/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Baltazar-Larios & Luz Judith R. Esparza, 2022. "Statistical Inference for Partially Observed Markov-Modulated Diffusion Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 571-593, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:12:y:2018:i:01:p:1-22_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.