IDEAS home Printed from https://ideas.repec.org/a/cuf/journl/y2002v3i1p117-134.html
   My bibliography  Save this article

Generalized Semiparametric Binary Prediction

Author

Listed:
  • Jeff Racine

    (Department of Economics, University of South Florida)

Abstract

This paper proposes a semiparametric approach to the estimation of ¡®generalized¡¯ binary choice models. A ¡®generalized¡¯ binary choice model is one with separate indices for each conditioning variable which constitutes a generalization of the standard single-index approach typically employed in applied work. The choice probability distribution is therefore a joint distribution across these indices as opposed to the typical univariate distribution on a scalar index commonly found in applied work. Interest lies in estimating choice probabilities and the gradient of choice probabilities with respect to the conditioning information, and these are estimated nonparametrically using the method of kernels. A data-driven cross-validatory method for bandwidth selection and index-parameter estimation is proposed for maximization of the nonparametric likelihood function. The functional form of the indices enters this nonparametric likelihood function thereby permitting data-driven determination of the index functions in addition to the shape of the joint cumulative distribution function itself. Applications are considered.

Suggested Citation

  • Jeff Racine, 2002. "Generalized Semiparametric Binary Prediction," Annals of Economics and Finance, Society for AEF, vol. 3(1), pages 117-134, May.
  • Handle: RePEc:cuf:journl:y:2002:v:3:i:1:p:117-134
    as

    Download full text from publisher

    File URL: http://aeconf.com/Articles/May2002/aef030107.pdf
    Download Restriction: no

    File URL: http://down.aefweb.net/AefArticles/aef030107.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    2. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    3. Picone, Gabriel A. & Butler, J.S., 2000. "Semiparametric Estimation Of Multiple Equation Models," Econometric Theory, Cambridge University Press, vol. 16(4), pages 551-575, August.
    4. Chen, Heng Z. & Randall, Alan, 1997. "Semi-nonparametric estimation of binary response models with an application to natural resource valuation," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 323-340.
    5. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    6. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    7. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    8. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    9. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    10. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    2. Bergtold, Jason S. & Ramsey, Steven M., 2015. "Neural Network Estimators of Binary Choice Processes: Estimation, Marginal Effects and WTP," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205649, Agricultural and Applied Economics Association.
    3. Mogens Fosgerau, 2024. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 308-318, Edward Elgar Publishing.
    4. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    5. Steven M. Ramsey & Jason S. Bergtold, 2021. "Examining Inferences from Neural Network Estimators of Binary Choice Processes: Marginal Effects, and Willingness-to-Pay," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1137-1165, December.
    6. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    7. Huang, J u-Chin & Nychka, Douglas W., 2000. "A nonparametric multiple choice method within the random utility framework," Journal of Econometrics, Elsevier, vol. 97(2), pages 207-225, August.
    8. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    9. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    10. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    11. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    12. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    13. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    14. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    15. Amit Gandhi & Jeremy T. Fox, 2009. "Identifying Heterogeneity in Economic Choice and Selection Models Using Mixtures," 2009 Meeting Papers 165, Society for Economic Dynamics.
    16. Mamine, Fateh & Fares, M'hand & Minviel, Jean Joseph, 2020. "Contract Design for Adoption of Agrienvironmental Practices: A Meta-analysis of Discrete Choice Experiments," Ecological Economics, Elsevier, vol. 176(C).
    17. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    18. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    19. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    20. Hoderlein, Stefan & Sherman, Robert, 2015. "Identification and estimation in a correlated random coefficients binary response model," Journal of Econometrics, Elsevier, vol. 188(1), pages 135-149.

    More about this item

    Keywords

    Semiparametric; Nonparametric methods;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cuf:journl:y:2002:v:3:i:1:p:117-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Qiang Gao (email available below). General contact details of provider: https://edirc.repec.org/data/emcufcn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.