IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v14y2013i3p495-506.html
   My bibliography  Save this article

A Modification of the Probability Weighted Method of Moments and its Application to Estimate the Financial Return Distribution Tail

Author

Listed:
  • Marta Małecka
  • Dorota Pekasiewicz

Abstract

The issue of fitting the tail of the random variable with an unknown distribution plays a pivotal role in finance statistics since it paves the ground for estimation of high quantiles and subsequently offers risk measures. The parametric estimation of fat tails is based on the convergence to the generalized Pareto distribution (GPD). The paper explored the probability weighted method of moments (PWMM) applied to estimation of the GPD parameters. The focus of the study was on the tail index, commonly used to characterize the degree of tail fatness. The PWMM algorithm requires specification of the cdf estimate of the so-called excess variable and depends on the choice of the order of the probability weighted moments. We suggested modification of the PWMM method through the application of the level crossing empirical distribution function. Through the simulation study, the paper investigated statistical properties of the GPD shape parameter estimates with reference to the PWMM algorithm specification. The simulation experiment was designed with the use of fat-tailed distributions with parameters assessed on the basis of the empirical daily data for DJIA index. The results showed that, in comparison to the commonly used cdf formula, the choice of the level crossing empirical distribution function improved the statistical properties of the PWMM estimates. As a complementary analysis, the PWMM tail estimate of DJIA log returns distribution was presented.

Suggested Citation

  • Marta Małecka & Dorota Pekasiewicz, 2013. "A Modification of the Probability Weighted Method of Moments and its Application to Estimate the Financial Return Distribution Tail," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 495-506, September.
  • Handle: RePEc:csb:stintr:v:14:y:2013:i:3:p:495-506
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v14_2013_i3_n10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Mei Ling & Brill, Percy, 1999. "A level crossing quantile estimation method," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 111-119, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Mei Ling, 2001. "On a distribution-free quantile estimator," Computational Statistics & Data Analysis, Elsevier, vol. 37(4), pages 477-486, October.
    2. Maria E. Frey & Hans C. Petersen & Oke Gerke, 2020. "Nonparametric Limits of Agreement for Small to Moderate Sample Sizes: A Simulation Study," Stats, MDPI, vol. 3(3), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:14:y:2013:i:3:p:495-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.