IDEAS home Printed from https://ideas.repec.org/a/col/000443/015411.html
   My bibliography  Save this article

Análisis de procesos explosivos en el precio de los activos financieros: evidencia alrededor del mundo

Author

Listed:
  • Julián Fernández Mejía
  • Jorge Mario Uribe

Abstract

En este artículo se analizan diferentes índices accionarios de mercados alrededor del mundo, en el periodo 1995-2013, con el fin de poner a prueba la existencia y fechar la aparición de procesos explosivos en sus mercados de acciones. Se hace uso de una prueba de signo, para construir diferentes índices de burbujas en los mercados financieros representativos de cada región, y se construye además un índice de las principales regiones financieras a partir de modelos dinámicos por factores. Estos índices permiten caracterizar las regiones en términos de riesgo y, asimismo, de ocurrencia de burbujas financieras. Se encuentra evidencia que senala cierto grado de sincronización entre los episodios de burbujas financieras en los mercados analizados y, en general, en todo el mundo. ******This article analyzes different international share price indices for the period 1995-2013, in order to test for the existence and date of appearance of asset price explosions in the world’s stock markets. A sign test is employed to construct different indices of bubbles in representative financial markets for each region, using dynamic factor models. These indices permit a characterization to be made of each region in terms of risk and, also, of the occurrence of financial bubbles. Evidence is found that indicates a certain degree of synchronization between episodes of financial bubbles in the markets analyzed and, generally, at international level.

Suggested Citation

  • Julián Fernández Mejía & Jorge Mario Uribe, 2016. "Análisis de procesos explosivos en el precio de los activos financieros: evidencia alrededor del mundo," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 8(1), pages 83-103, March.
  • Handle: RePEc:col:000443:015411
    as

    Download full text from publisher

    File URL: http://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/RFYPE/article/view/929/976
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Keith & Brooks, Chris, 2014. "Speculative bubbles and the cross-sectional variation in stock returns," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 20-31.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. George A. Akerlof, 2009. "How Human Psychology Drives the Economy and Why It Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1175-1175.
    4. Ricardo J. Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2008. "An Equilibrium Model of "Global Imbalances" and Low Interest Rates," American Economic Review, American Economic Association, vol. 98(1), pages 358-393, March.
    5. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    6. Allen, Franklin & Gale, Douglas, 2000. "Bubbles and Crises," Economic Journal, Royal Economic Society, vol. 110(460), pages 236-255, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    4. Rachida Ouysse, 2013. "Forecasting using a large number of predictors: Bayesian model averaging versus principal components regression," Discussion Papers 2013-04, School of Economics, The University of New South Wales.
    5. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    6. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    7. António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    8. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
    9. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    10. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    11. Michael Demmler & Amilcar Orlian Fernández Domínguez, 2021. "Bitcoin and the South Sea Company: A comparative analysis," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 197-224, March.
    12. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    13. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    15. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    16. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    17. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    18. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    19. Roy, Saktinil & Kemme, David M., 2020. "The run-up to the global financial crisis: A longer historical view of financial liberalization, capital inflows, and asset bubbles," International Review of Financial Analysis, Elsevier, vol. 69(C).
    20. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    21. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.

    More about this item

    Keywords

    burbujas; prueba de signo; factores; índices; crisis.;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000443:015411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad Católica de Colombia (email available below). General contact details of provider: https://edirc.repec.org/data/feuccco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.