IDEAS home Printed from https://ideas.repec.org/a/col/000217/007379.html
   My bibliography  Save this article

Predicciones de modelos econométricos y redes neuronales: el caso de la acción de SURAMINV

Author

Listed:
  • Jaime Enrique Arrieta Bechara
  • Juan Camilo Torres Cruz
  • Hermilson Velásquez Ceballos

Abstract

El objetivo del presente estudio radica en construir algunos modelos estadísticos, econométricosy de inteligencia artificial que permitan realizar predicciones sobre el comportamientode mercado de la acción de SURAMINV (Suramericana de Inversiones S. A.).Se obtuvo evidencia a favor de la utilización de modelos econométricos y de inteligenciaartificial construidos a partir de componentes principales, los cuales permiten lograrpredicciones sobre el comportamiento diario de la acción de SURAMINV, contrastandola hipótesis de la teoría de eficiencia débil de mercado. El trabajo va más allá que otrosdesarrollados sobre el tema, en el sentido de que más que lograr un buen pronóstico insample busca obtener resultados out of sample, controlando de esta manera la existenciade data snooping y, por tanto, suministrando información que puede ser aprovechada enestrategias de negociación.

Suggested Citation

  • Jaime Enrique Arrieta Bechara & Juan Camilo Torres Cruz & Hermilson Velásquez Ceballos, 2010. "Predicciones de modelos econométricos y redes neuronales: el caso de la acción de SURAMINV," Revista Semestre Económico, Universidad de Medellín, September.
  • Handle: RePEc:col:000217:007379
    as

    Download full text from publisher

    File URL: http://revistas.udem.edu.co/index.php/economico/article/view/277/260
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Red neuronal artificial (RNA); inteligencia artificial; modelos econométricos; análisis decomponentes principales (ACP); eficiencia de mercado.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000217:007379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andres Felipe Borraez (email available below). General contact details of provider: https://edirc.repec.org/data/femedco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.