IDEAS home Printed from https://ideas.repec.org/a/col/000129/011357.html
   My bibliography  Save this article

Superioridad relativa de los estimadores Kiviet y Blundell-Bond (GMM1) en paneles dinámicos. Un experimento Monte Carlo con muestras finitas

Author

Listed:
  • Andrés Eduardo Rangel Jiménez

Abstract

Dado el amplio uso de los datos de panel en modelos dinámicos, es relevante evaluar el desempeno de sus diferentes estimadores en muestras finitas en presencia de baja y alta persistencia. El presente artículo tiene como objetivo analizar, mediante simulaciones tipo Monte Carlo, las propiedades de los estimadores de efectos fijos (LSDV), Arellano y Bond (AB-GMM1), Blundell y Bond (BB-GMM1), Anderson y Hsiao (AH) y Kiviet. Se concluye que en series no persistentes el estimador de Kiviet es el de mejor desempeno, basándose en los criterios de error cuadrático medio, sesgo y desviación estándar; con alta persistencia, el estimador BB-GMM1 es el de mejor desempeno seguido por el estimador de Kiviet, que se comporta bien excepto en micropaneles con series persistentes.

Suggested Citation

  • Andrés Eduardo Rangel Jiménez, 2012. "Superioridad relativa de los estimadores Kiviet y Blundell-Bond (GMM1) en paneles dinámicos. Un experimento Monte Carlo con muestras finitas," Estudios Gerenciales, Universidad Icesi, December.
  • Handle: RePEc:col:000129:011357
    as

    Download full text from publisher

    File URL: http://www.icesi.edu.co/revistas/index.php/estudios_gerenciales/article/view/1531
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Datos de panelModelos dinámicosKivietMétodo de momentos;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E00 - Macroeconomics and Monetary Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000129:011357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Coordinador ICESI (email available below). General contact details of provider: https://edirc.repec.org/data/fciceco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.