IDEAS home Printed from https://ideas.repec.org/a/cog/urbpla/v4y2019i1p106-112.html
   My bibliography  Save this article

City of Flows: The Need for Design-Led Research to Urban Metabolism

Author

Listed:
  • Rob Roggema

    (Office for Adaptive Planning and Design, Cittaideale, The Netherlands / Knowledge Centre NoorderRuimte, Hanze University Groningen, The Netherlands)

Abstract

The design of cities has long ignored the flows that shape the city. Water has been the most visible one, but energy and materials were invisible and/or taken for granted. A little over 50 years ago, Abel Wolman was the first to illuminate the role of water flows in the urban fabric. It has long been a search for quantitative data while the flows were mostly seen as separated entities. The fact they invisibly formed the way the city appears has been neglected for many years. In this thematic issue the “city of flows” is seen as a design task. It aims to bring to the fore the role flows can play to be consciously used to make spatial decisions in how and where certain uses and infrastructure is located. Efficient and sustainable.

Suggested Citation

  • Rob Roggema, 2019. "City of Flows: The Need for Design-Led Research to Urban Metabolism," Urban Planning, Cogitatio Press, vol. 4(1), pages 106-112.
  • Handle: RePEc:cog:urbpla:v:4:y:2019:i:1:p:106-112
    as

    Download full text from publisher

    File URL: https://www.cogitatiopress.com/urbanplanning/article/view/1988
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juanjo Galan & Daniela Perrotti, 2019. "Incorporating Metabolic Thinking into Regional Planning: The Case of the Sierra Calderona Strategic Plan," Urban Planning, Cogitatio Press, vol. 4(1), pages 152-171.
    2. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    3. Lisa McLean & Rob Roggema, 2019. "Planning for a Prosumer Future: The Case of Central Park, Sydney," Urban Planning, Cogitatio Press, vol. 4(1), pages 172-186.
    4. Cathrin Zengerling, 2019. "Governing the City of Flows: How Urban Metabolism Approaches May Strengthen Accountability in Strategic Planning," Urban Planning, Cogitatio Press, vol. 4(1), pages 187-199.
    5. Qiyao Han & Greg Keeffe, 2019. "Mapping the Flow of Forest Migration through the City under Climate Change," Urban Planning, Cogitatio Press, vol. 4(1), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Longato & Giulia Lucertini & Michele Dalla Fontana & Francesco Musco, 2019. "Including Urban Metabolism Principles in Decision-Making: A Methodology for Planning Waste and Resource Management," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    2. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    3. Daniela Perrotti, 2019. "Evaluating urban metabolism assessment methods and knowledge transfer between scientists and practitioners: A combined framework for supporting practice-relevant research," Environment and Planning B, , vol. 46(8), pages 1458-1479, October.
    4. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    5. Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
    6. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
    7. Lei Zhu & Chenyujing Yang & Yuanyuan Zhang & Yongji Xue, 2022. "Using Marginal Land Resources to Solve the Shortage of Rural Entrepreneurial Land in China," Land, MDPI, vol. 11(7), pages 1-20, July.
    8. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    9. Vilanova, Mateus Ricardo Nogueira & Magalhães Filho, Paulo & Balestieri, José Antônio Perrella, 2015. "Performance measurement and indicators for water supply management: Review and international cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1-12.
    10. Obringer, R. & Kumar, R. & Nateghi, R., 2019. "Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the Midwestern United States," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    12. Ayami Hayashi & Fuminori Sano & Yasuhide Nakagami & Keigo Akimoto, 2018. "Changes in terrestrial water stress and contributions of major factors under temperature rise constraint scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1179-1205, December.
    13. Mohammad Taleghani & Azadeh Montazami & Daniela Perrotti, 2020. "Learning to Chill: The Role of Design Schools and Professional Training to Improve Urban Climate and Urban Metabolism," Energies, MDPI, vol. 13(9), pages 1-14, May.
    14. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    15. Valeria Puleo & Mariacrocetta Sambito & Gabriele Freni, 2015. "An Environmental Analysis of the Effect of Energy Saving, Production and Recovery Measures on Water Supply Systems under Scarcity Conditions," Energies, MDPI, vol. 8(6), pages 1-15, June.
    16. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    17. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    18. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    19. Lisa Harseim & Benjamin Sprecher & Cathrin Zengerling, 2021. "Phosphorus Governance within Planetary Boundaries: The Potential of Strategic Local Resource Planning in The Hague and Delfland, The Netherlands," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    20. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cog:urbpla:v:4:y:2019:i:1:p:106-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: António Vieira (email available below). General contact details of provider: https://www.cogitatiopress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.