Author
Listed:
- Bernd Resch
(Department of Geoinformatics - Z_GIS, University of Salzburg, Austria; Center for Geographic Analysis, Harvard University, Cambridge, USA and Institute of Geography (GIScience), Heidelberg University, Heidelberg, Germany)
- Anja Summa
(Department of Computational Linguistics, Heidelberg University, Heidelberg, Germany)
- Peter Zeile
(Computergestützte Planungs und Entwurfsmethoden (CPE), University of Kaiserslautern, Kaiserslautern, Germany)
- Michael Strube
(NLP Group, Heidelberg Institute for Theoretical Studies gGmbH, Heidelberg, Germany)
Abstract
Traditional urban planning processes typically happen in offices and behind desks. Modern types of civic participation can enhance those processes by acquiring citizens’ ideas and feedback in participatory sensing approaches like “People as Sensors”. As such, citizen-centric planning can be achieved by analysing Volunteered Geographic Information (VGI) data such as Twitter tweets and posts from other social media channels. These user-generated data comprise several information dimensions, such as spatial and temporal information, and textual content. However, in previous research, these dimensions were generally examined separately in single-disciplinary approaches, which does not allow for holistic conclusions in urban planning. This paper introduces TwEmLab, an interdisciplinary approach towards extracting citizens’ emotions in different locations within a city. More concretely, we analyse tweets in three dimensions (space, time, and linguistics), based on similarities between each pair of tweets as defined by a specific set of functional relationships in each dimension. We use a graph-based semi-supervised learning algorithm to classify the data into discrete emotions (happiness, sadness, fear, anger/disgust, none). Our proposed solution allows tweets to be classified into emotion classes in a multi-parametric approach. Additionally, we created a manually annotated gold standard that can be used to evaluate TwEmLab’s performance. Our experimental results show that we are able to identify tweets carrying emotions and that our approach bears extensive potential to reveal new insights into citizens’ perceptions of the city.
Suggested Citation
Bernd Resch & Anja Summa & Peter Zeile & Michael Strube, 2016.
"Citizen-Centric Urban Planning through Extracting Emotion Information from Twitter in an Interdisciplinary Space-Time-Linguistics Algorithm,"
Urban Planning, Cogitatio Press, vol. 1(2), pages 114-127.
Handle:
RePEc:cog:urbpla:v1:y:2016:i:2:p:114-127
DOI: 10.17645/up.v1i2.617
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cog:urbpla:v1:y:2016:i:2:p:114-127. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: António Vieira or IT Department (email available below). General contact details of provider: https://www.cogitatiopress.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.