Author
Listed:
- S.-J. Du
(Graduate Institute of Veterinary Medicine, National Taiwan University, Taiwan, ROC)
- H.-C. Kuo
(Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, ROC)
- C.-H. Cheng
(Graduate Institute of Veterinary Medicine, National Taiwan University, Taiwan, ROC)
- A.C.Y. Fei
(Graduate Institute of Veterinary Medicine, National Taiwan University, Taiwan, ROC)
- H.-W. Wei
(Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC)
- S.-K. Chang
(Graduate Institute of Veterinary Medicine, National Taiwan University, Taiwan, ROC)
Abstract
Sixty-six clinical P. aeruginosa isolates, 17 obtained from canine otitis specimens and 49 received from human patients with bloodstream infections, were collected between February 2007 and January 2008. The minimal inhibitory concentrations (MICs) of the antimicrobial agents of these isolates were determined. Multidrug resistance was common, with 23 (34.8%) isolates found to be ceftazidime resistant. To explore the mechanisms of ceftazidime resistance, PCR analyses were performed to detect drug-resistance genes. The prevalence rate of Ambler class A, B, and D β-lactamase genes were obtained, with blaTEM-1 100%, blaPSE-1 100%, blaOXA-2 96.2%, blaSHV-18 91.3%, blaOXA-17 78.3%, blaVIM-3 26.1%, blaOXA-10 21.7% and blaSHV-1 8.7%. An efflux inhibition assay with the PAβN compound was conducted. The ceftazidime resistance isolates were also tested by RT-qPCR to determine the mRNA expression levels of the oprM and ampC genes. Five (21.7%) of the ceftazidime resistance isolates appeared to overactivate the OprM efflux system. The ampD, ampE, and ampR genes and the ampC-ampR intergenic region were subsequently amplified and sequenced. Five (21.7%) of the ceftazidime resistance isolates from humans and canines had a point mutation in AmpR (Asp135-Asn, n = 3; Als194-Ser, n = 2), which induces AmpC overproduction from 10- to 80-fold. This study first reported ceftazidime resistance in P. aeruginosa from canine otitis specimens, which are closely related to ESBLs (50%), including the overproduction of AmpC (25%) and the OprM efflux system (25%). The ESBLs (100%) played an important role in all ceftazidime resistance isolates from humans, and either AmpC (21.1%) or OprM (21.1%) might be overexpressed within the same isolate. A human patient isolate (H307B) showed simultaneous expression of ESBLs, the OprM efflux system, and AmpC overproduction.
Suggested Citation
S.-J. Du & H.-C. Kuo & C.-H. Cheng & A.C.Y. Fei & H.-W. Wei & S.-K. Chang, 2010.
"Molecular mechanisms of ceftazidime resistance in Pseudomonas aeruginosa isolates from canine and human infections,"
Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 55(4), pages 172-182.
Handle:
RePEc:caa:jnlvet:v:55:y:2010:i:4:id:64-2010-vetmed
DOI: 10.17221/64/2010-VETMED
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlvet:v:55:y:2010:i:4:id:64-2010-vetmed. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.