Author
Listed:
- Dana Tollingerová
(Faculty of Environmental Science, Czech University of Life Sciences in Prague, Prague, Czech Republic)
- Karel Pavelka
(Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)
Abstract
Satellite data has become a commonly used information source. Landscapes components such as water, inorganic substances, vegetation, and the atmosphere may be distinguished making use of their spectral characteristics. The above mentioned components may be further divided. For example, inorganic substances may be subdivided into soil, minerals, build up areas etc. The spectral characteristics of soils are determined by moisture, humus contents, mineral composition, surface structure, and the stage of eroding processes. The development in remote sensing tends either to the data acquisition in more spectral bands or the improvement of the resolution of remote sensing data. The terra satellite ranks among new generation satellites; its orbital parameters are similar to the parameters of the Landsat system. ASTER (Advanced Spaceborn Thermal Emission and Reflection Radiometer) is one of the onboard instruments on Terra satellite and captures data in 14 spectral bands. The VNIR (Visible Near Infrared) subsystem provides 15 m spatial resolution data. Two of the VNIR subsystem telescopes enable stereoscopic data evaluation. A stereo-pair consists of 3N (nadir) and 3B (backward) images. A couple of 3N and 3B images can be used for the creation of a digital surface model (DSM) and orthophoto. This article describes the creation of DSM and orthophoto of an area located in the north-west part of the Czech Republic. Images of the area were made in years 2002 and 2005. In this work, level 1B images were used, i.e. images with radiometric and geometric corrections already applied. The model was created through the use of 21 control points selected in each scene. The standard error of co-ordinates of the control points is up to 15 m, the elevation standard error is approx. 30 m. The accuracy of the final DSM and orthophoto was tested on a set of 13 check points. The position standard error in DSM and orthophoto is approx. 15 m, i.e. just about the size of one pixel of the original data. The elevation standard error of the checkpoints is up to 40 m. The output can be used as a basis for small-scale maps. Using one scene acquired by ASTER instruments, a DSM and orthophoto covering an area of 60 × 60 km can be created. Keywords: remote sensing; ASTER; digital surface model; orthophoto
Suggested Citation
Dana Tollingerová & Karel Pavelka, 2008.
"Creating of digital surface model and orthophoto from ASTER satellite data and their application in land/water research,"
Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 3(2), pages 52-61.
Handle:
RePEc:caa:jnlswr:v:3:y:2008:i:2:id:2420-swr
DOI: 10.17221/2420-SWR
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:3:y:2008:i:2:id:2420-swr. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.