IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v17y2022i4id48-2022-swr.html
   My bibliography  Save this article

Evaluation of sediment barriers in relation to the trap of soil particles

Author

Listed:
  • David Kincl

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • David Kabelka

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic)

  • Darina Heřmanovská

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic)

  • Jan Vopravil

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Rudolf Urban

    (Department of Special Geodesy, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)

  • Tomáš Křemen

    (Department of Special Geodesy, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic)

Abstract

Water erosion and the subsequent sediment deposits can cause a number of environmental problems. The damage can be mitigated by means of sediment barriers. Their use is most often associated with the construction or protection of transport infrastructure. In some cases, they can also be used in forestry and agriculture. However, there is still a number of questions concerning sediment barriers regarding their proper function, efficiency and some implementation parameters. For these reasons, we decided to verify three types of sediment barriers. They were tested by simulated flooding at a flow of 5 and 10 L/s, always for a span of 25 min. All the tested barriers had a similar soil particle trap efficiency of about 90%. We assume that this result was due to some of our modifications to the sediment barriers and, above all, through the ensured run-off, where there were no structural failures within the barriers. Furthermore, it was also found, during the simulations, that the required sediment process of the eroded soil was not significantly affected by the size of the storage space. Therefore, it should be designed primarily with regard to the required amount of sediment and not to retain a significantly large volume of water.

Suggested Citation

  • David Kincl & David Kabelka & Darina Heřmanovská & Jan Vopravil & Rudolf Urban & Tomáš Křemen, 2022. "Evaluation of sediment barriers in relation to the trap of soil particles," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 201-210.
  • Handle: RePEc:caa:jnlswr:v:17:y:2022:i:4:id:48-2022-swr
    DOI: 10.17221/48/2022-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/48/2022-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/48/2022-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/48/2022-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    2. Eva Procházková & David Kincl & David Kabelka & Jan Vopravil & Pavel Nerušil & Ladislav Menšík & Vojtěch Barták, 2020. "The impact of the conservation tillage "maize into grass cover" on reducing the soil loss due to erosion," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(3), pages 158-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Chang & Qu, Liqin & Zhang, Qingwen & Li, Xuecao, 2021. "A systematic review on comprehensive sloping farmland utilization based on a perspective of scientometrics analysis," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    3. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    4. Hope Mwanake & Bano Mehdi-Schulz & Karsten Schulz & Nzula Kitaka & Luke O. Olang & Jakob Lederer & Mathew Herrnegger, 2023. "Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion," Agriculture, MDPI, vol. 13(7), pages 1-32, July.
    5. Smith, Jo & Nayak, Dali & Datta, Ashim & Narkhede, Wasudeo Nivrutti & Albanito, Fabrizio & Balana, Bedru & Bandyopadhyay, Sanjoy K. & Black, Helaina & Boke, Shiferaw & Brand, Alison & Byg, Anja & Dina, 2020. "A systems model describing the impact of organic resource use on farming households in low to middle income countries," Agricultural Systems, Elsevier, vol. 184(C).
    6. Haiyan Fang, 2021. "Responses of Runoff and Soil Loss on Slopes to Land Use Management and Rainfall Characteristics in Northern China," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    7. Chen, Die & Wei, Wei & Chen, Liding, 2020. "How can terracing impact on soil moisture variation in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Dickson N. Khainga & Paswel P. Marenya & Maria Luz Quinhentos, 2021. "How much is enough? How multi-season exposure to demonstrations affects the use of conservation farming practices in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 11067-11089, July.
    9. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    10. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    11. Dexun Jiang & Yiting Guo & Jie Liu & Hao Zhu & Zhijuan Qi & Yuanlong Chen, 2021. "Spatiotemporal Assessment of Water Conservation Function for Ecosystem Service Management Using a GIS-Based Data-Fusion Analysis Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4309-4323, October.
    12. Meron Lakew Tefera & Hassan Awada & Mario Pirastru & James Mantent Kombiok & Joseph Adjebeng-Danquah & Ramson Adombilla & Peter Anabire Asungre & George Mahama & Alberto Carletti & Giovanna Seddaiu, 2024. "Remote Sensing and Field Data Analysis to Evaluate the Impact of Stone Bunds on Rainfed Agriculture in West Africa," Land, MDPI, vol. 13(10), pages 1-19, October.
    13. Willis Ndeda Ochilo & Stefan Toepfer & Privat Ndayihanzamaso & Idah Mugambi & Janny Vos & Celestin Niyongere, 2022. "Assessing the Plant Health System of Burundi: What It Is, Who Matters and Why," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    14. Mideksa, Babu & Muluken, Gezahegn & Eric, Ndemo, 2023. "The impact of soil and water conservation practices on food security in eastern Ethiopia. A propensity score matching approach," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Gajanan Ramteke & R. Singh & C. Chatterjee, 2020. "Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4233-4252, October.
    16. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    17. Sartori, Martina & Philippidis, George & Ferrari, Emanuele & Borrelli, Pasquale & Lugato, Emanuele & Montanarella, Luca & Panagos, Panos, 2019. "A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion," Land Use Policy, Elsevier, vol. 86(C), pages 299-312.
    18. Haiyan Fang, 2021. "Using WaTEM/SEDEM to Configure Catchment Soil Conservation Measures for the Black Soil Region, Northeastern China," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    19. Pang, Jihong & Liu, Xiaojing & Huang, Qinghua, 2020. "A new quality evaluation system of soil and water conservation for sustainable agricultural development," Agricultural Water Management, Elsevier, vol. 240(C).
    20. Abyiot Teklu & Belay Simane & Mintewab Bezabih, 2022. "Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia," Sustainability, MDPI, vol. 14(23), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:17:y:2022:i:4:id:48-2022-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.