Author
Listed:
- Anna KOPČÁKOVÁ
(Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovak Republic)
- Jaroslav LEGÁTH
(University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic)
- Peter PRISTAŠ
(Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovak Republic)
- Peter JAVORSKÝ
(Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovak Republic)
Abstract
The early impact of glufosinate derived herbicide Basta® 15 on bacterial communities of two different soils never exposed to this herbicide was investigated using cultivation approach and non-cultivation based denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16S rRNA genes. Under the simulated laboratory conditions glufosinate treatment increased numbers of total cultivable heterotrophic bacteria in both tested soils. Surprisingly even the lowest glufosinate concentration (1 mmol) significantly affected bacterial community composition in both tested soils and original populations were replaced by new ones upon the 2 days glufosinate treatment. In nutrient rich Haniska soil the effect was dose dependent and glufosinate treatment decreased genetic diversity of bacterial population. In nutrient poor Kaľava soil the highest glufosinate concentration (16 mmol) increased the diversity of bacterial population probably as a result of carbon source supplementation. Glufosinate treatment selected Gram-negative bacteria in both soils. Two species of Enterobacter genus were found to be dominant in glufosinate treated Haniska soil and Pseudomonas beteli and Brevundimonas diminuta were found to be dominant in glufosinate treated Kaľava soil using non-cultivation based DGGE method. Our data indicated that under the simulated soil conditions the soil bacterial community was significantly affected even by a short-term exposure to glufosinate.
Suggested Citation
Anna KOPČÁKOVÁ & Jaroslav LEGÁTH & Peter PRISTAŠ & Peter JAVORSKÝ, 2015.
"Already a short-term soils exposure to the field-rate glufosinate concentration significantly influences soil bacterial communities,"
Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(4), pages 271-277.
Handle:
RePEc:caa:jnlswr:v:10:y:2015:i:4:id:185-2014-swr
DOI: 10.17221/185/2014-SWR
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:10:y:2015:i:4:id:185-2014-swr. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.