IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v68y2022i1id106-2020-rae.html
   My bibliography  Save this article

Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation

Author

Listed:
  • Timothy Adekanye

    (Department of Agricultural and Biosystems Engineering, Landmark University, Omu-Aran, Nigeria)

  • Oluwasogo Dada

    (Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria)

  • Jegede Kolapo

    (Department of Agricultural and Biosystems Engineering, Landmark University, Omu-Aran, Nigeria)

Abstract

Adopting the concept of the waste to wealth approach, agricultural waste from maize cob could be transformed into a renewable form of energy through thermo-chemical methods of treating the biomass. This method can be utilised for biochar production. The utilisation of biochar has several significant applications. These applications include the enhancement of the soil through amendment, stimulation of crop production by a variety nutrient inputs in the soil, etc. In this research work, a biochar was obtained through a slow pyrolysis process of maize cob waste. This experiment was carried out using a small-scale muffle furnace and subjecting the feedstock to heating at different temperatures (300, 400, 500 °C). The biochar was produced and characterised by a proximate analysis, scan electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, while the surface area was determined by Saer's method. The effect of the temperature on the yield of the biochar was investigated. The results show that the biochar yield decreases with an increasing temperature for the maize cob biochar at 300, 400 and 500 °C. The results of the physiochemical properties showed that the temperature has a great impact on the physicochemical properties of the biochar. The biochar produced at 300 °C has the highest fixed carbon content of 60.5%. The largest surface area was (281.8 m2.g-1) at 500 °C.

Suggested Citation

  • Timothy Adekanye & Oluwasogo Dada & Jegede Kolapo, 2022. "Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(1), pages 27-34.
  • Handle: RePEc:caa:jnlrae:v:68:y:2022:i:1:id:106-2020-rae
    DOI: 10.17221/106/2020-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/106/2020-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/106/2020-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/106/2020-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. Sonil Nanda & Pravakar Mohanty & Janusz Kozinski & Ajay Dalai, 2014. "Physico-Chemical Properties of Bio-Oils from Pyrolysis of Lignocellulosic Biomass with High and Slow Heating Rate," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(3), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    2. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
    5. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    6. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    7. Tomislav Malvić & Uroš Barudžija & Borivoje Pašić & Josip Ivšinović, 2021. "Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia," Energies, MDPI, vol. 14(12), pages 1-16, June.
    8. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    9. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    10. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    11. Fleck, Ann-Katrin & Anatolitis, Vasilios, 2023. "Achieving the objectives of renewable energy policy – Insights from renewable energy auction design in Europe," Energy Policy, Elsevier, vol. 173(C).
    12. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    13. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    15. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    16. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    17. Sarraf, M. & Rismanchi, B. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Renewable energy policies for sustainable development in Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 223-229.
    18. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    19. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    20. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2022. "Indicators for sustainable energy development: An Icelandic case study," Energy Policy, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:68:y:2022:i:1:id:106-2020-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.