IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i12id179-2024-pse.html
   My bibliography  Save this article

The effects of long-term rice straw and biochar return on soil humus composition and structure in paddy soil

Author

Listed:
  • Jinyue Ying

    (Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, Hangzhou, P.R. China
    College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Hangzhou, P.R. China)

  • Xi Zhang

    (Red River Research Station and School of Plant, Environmental and Soil Sciences, Louisiana State University-Agricultural Center, Bossier City, USA)

  • Weixiang Wu

    (Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, P.R. China)

  • Qiong Nan

    (Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, P.R. China)

  • Guorong Wang

    (Agricultural (Forestry) Technology Promotion Center, Xiaoshan, Hangzhou, P.R. China)

  • Da Dong

    (Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, Hangzhou, P.R. China
    College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Hangzhou, P.R. China)

Abstract

The aim of this study was to evaluate the effects of continuous application of rice straw and biochar for 10 years on soil humus composition and structure in paddy soil. A 10-year field experiment was conducted in a paddy field and included three treatments: rice straw biochar (SC); rice straw (RS), no biochar or rice straw. The elemental analyser, Fourier transform infrared (FT-IR) spectrum, and three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis were used to study the soil humus composition and structure under different treatments. The results verified that the incorporation of rice straw and biochar significantly improved soil pH values and the soil organic carbon contents compared with the control. Rice straw significantly increased the contents of extractable humus, humic acid (HA) and fulvic acid in soil, while biochar only significantly affected HA and humic degree values. The molecular structure of HA affected by biochar is characterised by high humification and aromaticity, but rice straw increased the aliphaticity of the HA structure, as presented by elemental composition. Moreover, 3D EEM spectroscopy combined with FRI analysis showed that RS treatment formed soil humus had more aliphatic compounds, while SC treatment increased the aromatic components of humus. These results suggest that rice straw promotes the renewal of humus, and biochar enhances the humification degree of humus and the aromaticity of HA.

Suggested Citation

  • Jinyue Ying & Xi Zhang & Weixiang Wu & Qiong Nan & Guorong Wang & Da Dong, 2024. "The effects of long-term rice straw and biochar return on soil humus composition and structure in paddy soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(12), pages 772-782.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:12:id:179-2024-pse
    DOI: 10.17221/179/2024-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/179/2024-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/179/2024-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/179/2024-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Yinan Yang & Lili Wang & Yifeng Zhang & Libo Li & Xuyang Shi & Xintong Liu & Xiaodong Ren & Sen Dou, 2019. "Transformation of Corn Stalk Residue to Humus-Like Substances during Solid-State Fermentation," Sustainability, MDPI, vol. 11(23), pages 1-11, November.
    3. J. Horáček & E. Strosser & V. Čechová, 2014. "Carbon fraction concentrations in a haplic Luvisol as affected by tillage," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(6), pages 262-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:caa:jnlpse:v:preprint:id:179-2024-pse is not listed on IDEAS
    2. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    3. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    4. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    5. Meiting Li & Keqin Wang & Xiaoyi Ma & Mingsi Fan & Biyu Li & Yali Song, 2025. "Relationship Between Soil Aggregate Stability and Associated Carbon and Nitrogen Changes Under Different Ecological Construction Measures in the Karst Region of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    6. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    7. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    8. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    9. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    10. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    11. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    12. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    13. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    14. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    15. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Chao Chen & Yinglin Liang & Zhilong Chen & Changwu Zou & Zongbo Shi, 2024. "Black Carbon in Climate Studies: A Bibliometric Analysis of Research Trends and Topics," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
    17. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    18. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    19. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.
    21. Duyen Minh Pham & Arata Katayama, 2018. "Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods," IJERPH, MDPI, vol. 15(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:12:id:179-2024-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.