IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i10id66-2024-pse.html
   My bibliography  Save this article

Alleviating cadmium toxicity in maize plants: role of glycine betaine in enhancing growth, photosynthetic efficiency, water status, and antioxidant defense mechanism

Author

Listed:
  • Abeer Hamdy Elhakem

    (Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia)

Abstract

The issue of heavy metals (HMs) contamination poses a significant challenge in the environment, exerting a severe impact on the growth and productivity of crops. Cadmium (Cd) is specifically identified as the seventh heavy metal among the top 20 pollutants, primarily due to its elevated phytotoxicity and its solubility in water. In the current study, foliar application of glycine betaine (GB) (500 µmol) investigated the toxic effects of cadmium in maize plants subjected to two Cd concentrations (50 and 100 µmol) as CdCl2. The maize plants exposed to Cd stress exhibited a massive reduction in growth, biomass, photosynthetic pigments [chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and total pigments], gas exchange parameters [transpiration rate (Tr), net photosynthetic rate (Pn), intracellular CO2 concentration (ci), and stomatal conductance (gs)], relative water content (RWC), and organic osmolytes content [total soluble protein (TSS), and total soluble sugar (TSS)]. These impacts were significant with the 100 µmol CdCl2 treatment. Moreover, Cd led to remarked increase in proline, nonenzymatic antioxidants levels [ascorbic acid (AsA) and glutathione (GSH)] as well as the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). On the other hand, GB application efficiently relieved the Cd toxic impacts on maize and maintained higher growth criteria, gas exchange parameters, photosynthetic pigments, RWC, and organic osmolytes. In addition, the exogenous application of GB added more enhancement to the antioxidative system (enzymatic and nonenzymatic). These results imply that GB could significantly preserve maize growth under Cd toxicity conditions by maintaining photosynthetic characteristics, water status, and antioxidant system. This suggests an enhancement in the plant's resilience to stress induced by heavy metals.

Suggested Citation

  • Abeer Hamdy Elhakem, 2024. "Alleviating cadmium toxicity in maize plants: role of glycine betaine in enhancing growth, photosynthetic efficiency, water status, and antioxidant defense mechanism," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(10), pages 617-631.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:10:id:66-2024-pse
    DOI: 10.17221/66/2024-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/66/2024-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/66/2024-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/66/2024-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abeer Hamdy Elhakem, 2020. "Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(10), pages 533-541.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:caa:jnlpse:v:preprint:id:66-2024-pse is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:10:id:66-2024-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.