IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v57y2011i4id443-2010-pse.html
   My bibliography  Save this article

Long term effects of different soil tillage systems on maize (Zea mays L.) yields

Author

Listed:
  • Ž. Videnović

    (Maize Research Institute, Zemun Polje, Belgrade, Serbia)

  • M. Simić

    (Maize Research Institute, Zemun Polje, Belgrade, Serbia)

  • J. Srdić

    (Maize Research Institute, Zemun Polje, Belgrade, Serbia)

  • Z. Dumanović

    (Maize Research Institute, Zemun Polje, Belgrade, Serbia)

Abstract

The effects of three tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT), and three levels of fertilization (0, 258 and 516 kg/ha NPK (58:18:24)), on the maize yield during ten years (1999-2008) were analyzed on the chernozem soil type in Zemun Polje, Serbia. Statistical analyses showed significant effects of all three factors i.e., year, soil tillage and amount of fertilizers, and their interactions on the maize yield. The ten-year averages showed that the highest yields were observed with CT (10.61 t/ha), while the averages with RT and NT were lower (8.99 t/ha and 6.85 t/ha, respectively). The results of the influence of the amount of the applied fertilizers on maize yield showed that the lowest yield was in the zero level of fertilization 7.71 t/ha, while the yield was raised when the 258 kg/ha and 516 kg/ha NPK were applied (9.18 t/ha and 9.56 t/ha, respectively). Analyzing the influence of the soil tillage systems on maize production with respect to the amounts of applied fertilizers, this research revealed the benefits of CT under the presented agroecological conditions, irrespective of the level of applied fertilizer.

Suggested Citation

  • Ž. Videnović & M. Simić & J. Srdić & Z. Dumanović, 2011. "Long term effects of different soil tillage systems on maize (Zea mays L.) yields," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 186-192.
  • Handle: RePEc:caa:jnlpse:v:57:y:2011:i:4:id:443-2010-pse
    DOI: 10.17221/443/2010-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/443/2010-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/443/2010-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/443/2010-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X.B. Liu & X.Y. Zhang & Y.X. Wang & Y.Y. Sui & S.L. Zhang & S.J. Herbert & G. Ding, 2010. "Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(2), pages 87-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O. Mikanová & T. Šimon & M. Javůrek & M. Vach, 2012. "Relationships between winter wheat yields and soil carbon under various tillage systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(12), pages 540-544.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yang & Zhang, Yan & Gao, Yan & McLaughlin, Neil B. & Huang, Dandan & Wang, Yang & Chen, Xuewen & Zhang, Shixiu & Liang, Aizhen, 2024. "Effects of tillage practices on environment, energy, and economy of maize production in Northeast China," Agricultural Systems, Elsevier, vol. 215(C).
    2. Melese Baye Hailu & S. K. Mishra & Sanjay K. Jain, 2024. "Sediment yield modelling and prioritization of erosion-prone sub-basins in the Tekeze watershed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19855-19870, August.
    3. X.W. Chen & A.Z. Liang & S.X. Jia & X.P. Zhang & S.C. Wei, 2014. "Impact of tillage on physical characteristics in a Mollisol of Northeast China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(7), pages 309-313.
    4. Cuilan LI & Shuqing GAO & Jinjing ZHANG & Lanpo ZHAO & Lichun WANG, 2016. "Moisture effect on soil humus characteristics in a laboratory incubation experiment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(1), pages 37-43.
    5. Hao Li & Wenjing Zhao & Jing Wang & Xiaozhe Geng & Chunyu Song, 2024. "Evaluating the Accuracy of Contour Ridgeline Positioning for Soil Conservation in the Northeast Black Soil Region of China," Sustainability, MDPI, vol. 16(8), pages 1-15, April.
    6. Biljana Balabanova & Liping Fan, 2024. "Lead And Strontium Isotope Evidence For Local Herbal Varieties Due To The Elemental Soil Chemistry," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 10(02), April.
    7. Xuesong Zhan & Shuqi Xin & Chaofeng Shao & Feng Yang & Yuhan Long, 2023. "Study of the Spatio-Temporal Variation of Agricultural Sustainability at National and Provincial Levels in China," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    8. J.J. Zhang & H. Li & H.J. Gao & P. Zhu & Q. Gao & L.C. Wang, 2014. "Effects of long-term fertilization and cropping regimes on total nitrogen and organic nitrogen forms in a Mollisol of Northeast China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(12), pages 544-549.
    9. Futao Zhang & Yunfa Qiao & Xiaozeng Han & Bin Zhang, 2021. "Variation of soil organic matter depends on light-fraction organic matter under long-term monocropping of different crops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(10), pages 588-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:57:y:2011:i:4:id:443-2010-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.