IDEAS home Printed from https://ideas.repec.org/a/bps/jspath/v1y2024i6id5079.html
   My bibliography  Save this article

Exploring Machine Learning Algorithms for Email Spam Filtering

Author

Listed:
  • PRANJAL PRASAD

Abstract

Spams are irrelevant or inappropriate emails, and they are on the rise across different digital communication channels globally. These unsolicited and unwelcome perilous emails lead to adverse impacts like security risks, time and resources wastage, financial loss, reputation damage, and legal consequences. Therefore, intelligent anti-spam email filters are required to prevent such emails from being delivered to the recipient's mailbox. Artificial Intelligence and Machine Learning algorithms provide trustworthy countermeasures and affordable solutions to tackle this global problem. Machine Learning techniques like Logistics Regression, Decision Tree, Support Vector Machines, K-nearest neighbor, Naïve Bayes Classifier, and Random Forest provide solutions to classify spam emails with reasonable accuracy and precision. This research explores different approaches to identifying spam emails and developing machine-learning algorithms to filter such emails automatically. Results manifest that the Support Vector Machine and Naïve Bayes Model most accurately classified spam emails. The Support Vector Machine exhibited the best balance between high precision and recall, making it highly effective in identifying spam messages with fewer false positives.

Suggested Citation

  • Pranjal Prasad, 2024. "Exploring Machine Learning Algorithms for Email Spam Filtering," SPAST Reports, SPAST Foundation, vol. 1(6).
  • Handle: RePEc:bps:jspath:v:1:y:2024:i:6:id:5079
    as

    Download full text from publisher

    File URL: https://spast.org/article/view/5079/435
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bps:jspath:v:1:y:2024:i:6:id:5079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Srinesh Singh Thakur (email available below). General contact details of provider: https://spast.org/ojspath/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.