IDEAS home Printed from https://ideas.repec.org/a/bps/jspath/v1y2024i2id13.html
   My bibliography  Save this article

A Weighted multi-objective evolutionary algorithm optimization

Author

Listed:
  • Amit Kumar Sinha

Abstract

Weight Based Genetic Algorithms (WBGA) have a computational efficacy and non-cumbersome for multi-objective optimization. The solutions obtained in the converged region do not always produce maximum optimization for all the objective functions simultaneously. But, the combination of the solutions from different iteration may yield optimized values for all the objective functions to a satisfactory level. The paper attempts to find a method which keeps the simplicity and computational efficiency of WBGA intact, but at the same time counters the problem of inferior pareto-optimal solutions. This is done by finding such a combinational set of solutions which yields strong values for all the objectives. The paper proposes neutrosophic logic (NL) as a postprocessor to the outcome of the WBGA. The NL assigns a percentage of truth, false and indeterminant value to the obtained solutions. The proposed postprocessor operation has been demonstrated with hand calculations on a test problem, and a complex practical example. The results obtained as compared to WBGA show the emergence of a superior solution-set and reaches in close agreement with NSGA-II, while maintaining the computational efficiency.

Suggested Citation

  • Amit Kumar Sinha, 2024. "A Weighted multi-objective evolutionary algorithm optimization," SPAST Reports, SPAST Foundation, vol. 1(2).
  • Handle: RePEc:bps:jspath:v:1:y:2024:i:2:id:13
    as

    Download full text from publisher

    File URL: https://spast.org/article/view/13/6
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bps:jspath:v:1:y:2024:i:2:id:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Srinesh Singh Thakur (email available below). General contact details of provider: https://spast.org/ojspath/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.