IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v32y2015i1p49-72n3.html
   My bibliography  Save this article

Series expansions for convolutions of Pareto distributions

Author

Listed:
  • Nguyen Quang Huy

    (Institut de Science Financière et d'Assurances, Université Lyon 1, 50 avenue Tony Garnier, 69366 Lyon cedex 7, France)

  • Robert Christian Y.

    (Institut de Science Financière et d'Assurances, Université Lyon 1, 50 avenue Tony Garnier, 69366 Lyon cedex 7, France)

Abstract

Asymptotic expansions for the tails of sums of random variables with regularly varying tails are mainly derived in the case of identically distributed random variables or in the case of random variables with the same tail index. Moreover, the higher-order terms are often given under the condition of existence of a moment of the distribution. In this paper, we obtain infinite series expansions for convolutions of Pareto distributions with non-integer tail indices. The Pareto random variables may have different tail indices and different scale parameters. We naturally find the same constants for the first terms as given in the previous asymptotic expansions in the case of identically distributed random variables, but we are now able to give the next additional terms. Since our series expansion is not asymptotic, it may be also used to compute the values of quantiles of the distribution of the sum as well as other risk measures such as the Tail Value at Risk. Examples of values are provided for the sum of at least five Pareto random variables and are compared to those determined via previous asymptotic expansions or via simulations.

Suggested Citation

  • Nguyen Quang Huy & Robert Christian Y., 2015. "Series expansions for convolutions of Pareto distributions," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 49-72, April.
  • Handle: RePEc:bpj:strimo:v:32:y:2015:i:1:p:49-72:n:3
    DOI: 10.1515/strm-2014-1168
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/strm-2014-1168
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/strm-2014-1168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Kortschak, Dominik, 2009. "On ruin probability and aggregate claim representations for Pareto claim size distributions," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 362-373, December.
    2. Kortschak, Dominik & Albrecher, Hansjörg, 2010. "An asymptotic expansion for the tail of compound sums of Burr distributed random variables," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 612-620, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Kortschak, Dominik & Albrecher, Hansjörg, 2010. "An asymptotic expansion for the tail of compound sums of Burr distributed random variables," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 612-620, April.
    3. Withers, Christopher S. & Nadarajah, Saralees, 2013. "The distribution of the amplitude and phase of the mean of a sample of complex random variables," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 128-152.
    4. Danijel Grahovac, 2018. "Densities of Ruin-Related Quantities in the Cramér-Lundberg Model with Pareto Claims," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 273-288, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:32:y:2015:i:1:p:49-72:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.