IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v7y2008i1n1.html
   My bibliography  Save this article

Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for Analyzing Cell Cycle-Specific Gene Expression Data

Author

Listed:
  • Kim Chang Sik

    (Institute of Animal Resources Research, Kangwon National University)

Abstract

Based on previous studies related to the yeast cell cycle, it is well known that the underlying cellular network in yeast consists of many interactions between genes that have periodic expression patterns during the cell division cycle. In this study, it is proposed that cell cycle-specific gene expression can be understood as a phenomenon of collective synchronization or, in other words, an ensemble of non-identical oscillating response signals from different systems. Therefore, we aimed to apply the theory of statistical multivariate phase synchronization to understand the cell's cyclic transcriptome as a phenomenon of collective synchronization. To this end, a novel algorithm called Self-Organizing Maps with statistical Phase Synchronization (SOMPS) is proposed and evaluated using yeast cell cycle-specific gene expression data. From the evaluation experiments, we draw the following conclusions: 1) It is possible to find groups of genes that have biological interactions with each other and significantly share gene ontology slim terms of biological processes using the theory of multivariate phase synchronization with cell cycle-specific gene expression signals; 2) Among all output clusters of SOMPS, a relatively large cluster with high periodicity with respect to its trained mean field can be considered a prominent cluster; 3) For each gene, it is possible to identify the degree of the strength of its biological interactions with other genes using the coupling strength of synchronization with its trained mean field; and 4) It is feasible to understand cell cycle-specific expression patterns as a phenomenon of collective synchronization.

Suggested Citation

  • Kim Chang Sik, 2008. "Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for Analyzing Cell Cycle-Specific Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-34, January.
  • Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:1
    DOI: 10.2202/1544-6115.1323
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1323
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jach Agnieszka E & MarĂ­n Juan M, 2010. "Classification of Genomic Sequences via Wavelet Variance and a Self-Organizing Map with an Application to Mitochondrial DNA," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.