IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v5y2006i1n1.html
   My bibliography  Save this article

Low-Order Conditional Independence Graphs for Inferring Genetic Networks

Author

Listed:
  • Wille Anja

    (ETH Zurich)

  • Bühlmann Peter

    (ETH Zurich)

Abstract

As a powerful tool for analyzing full conditional (in-)dependencies between random variables, graphical models have become increasingly popular to infer genetic networks based on gene expression data. However, full (unconstrained) conditional relationships between random variables can be only estimated accurately if the number of observations is relatively large in comparison to the number of variables, which is usually not fulfilled for high-throughput genomic data.Recently, simplified graphical modeling approaches have been proposed to determine dependencies between gene expression profiles. For sparse graphical models such as genetic networks, it is assumed that the zero- and first-order conditional independencies still reflect reasonably well the full conditional independence structure between variables. Moreover, low-order conditional independencies have the advantage that they can be accurately estimated even when having only a small number of observations. Therefore, using only zero- and first-order conditional dependencies to infer the complete graphical model can be very useful. Here, we analyze the statistical and probabilistic properties of these low-order conditional independence graphs (called 0-1 graphs). We find that for faithful graphical models, the 0-1 graph contains at least all edges of the full conditional independence graph (concentration graph). For simple structures such as Markov trees, the 0-1 graph even coincides with the concentration graph. Furthermore, we present some asymptotic results and we demonstrate in a simulation study that despite their simplicity, 0-1 graphs are generally good estimators of sparse graphical models. Finally, the biological relevance of some applications is summarized.

Suggested Citation

  • Wille Anja & Bühlmann Peter, 2006. "Low-Order Conditional Independence Graphs for Inferring Genetic Networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-34, January.
  • Handle: RePEc:bpj:sagmbi:v:5:y:2006:i:1:n:1
    DOI: 10.2202/1544-6115.1170
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1170
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.
    2. Lèbre Sophie, 2009. "Inferring Dynamic Genetic Networks with Low Order Independencies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-40, February.
    3. Charbonnier Camille & Chiquet Julien & Ambroise Christophe, 2010. "Weighted-LASSO for Structured Network Inference from Time Course Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-29, February.
    4. Zhu, Kailun & Kurowicka, Dorota, 2022. "Regular vines with strongly chordal pattern of (conditional) independence," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    5. Verzelen, N. & Villers, F., 2009. "Tests for Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1894-1905, March.
    6. Ajmal Hamda B. & Madden Michael G., 2020. "Inferring dynamic gene regulatory networks with low-order conditional independencies – an evaluation of the method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-19, December.

    More about this item

    Keywords

    Graphical modeling; Gene expression;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:5:y:2006:i:1:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.