IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v4y2005i1n25.html
   My bibliography  Save this article

Prediction of Genomewide Conserved Epitope Profiles of HIV-1: Classifier Choice and Peptide Representation

Author

Listed:
  • Xiao Yuanyuan

    (University of California, San Francisco)

  • Segal Mark R

    (University of California, San Francisco)

Abstract

Identification of peptides binding to Major Histocompatibility Complex (MHC) molecules is important for accelerating vaccine development and improving immunotherapy. Accordingly, a wide variety of prediction methods have been applied in this context. In this paper, we introduce (tree-based) ensemble classifiers for such problems and contrast their predictive performance with forefront existing methods for both MHC class I and class II molecules. In addition, we investigate the impact of differing peptide representation schemes on performance. Finally, classifier predictions are used to conduct genomewide scans of a diverse collection of HIV-1 strains, enabling assessment of epitope conservation. We investigated all combinations of six classification methods (classification trees, artificial neural networks, support vector machines, as well as the more recently devised ensemble methods (bagging, random forests, boosting) with four peptide representation schemes (amino acid sequence, select biophysical properties, select quantitative structure-activity relationship (QSAR) descriptors, and the combination of the latter two) in predicting peptide binding to an MHC class I molecule (HLA-A2) and MHC class II molecule (HLA-DR4). Our results show that the ensemble methods are consistently more accurate than the other three alternatives. Furthermore, they are robust with respect to parameter tuning. Among the four representation schemes, the amino acid sequence representation gave consistently (across classifiers) best results. This finding obviates the need for feature selection strategies incurred by use of biophysical and/or QSAR properties. We obtained, and aligned, a diverse set of 32 HIV-1 genomes and pursued genomewide HLA-DR4 epitope profiling by querying with respect to classifier predictions, as obtained under each of the four peptide representation schemes. We validated those epitopes conserved across strains against known T-cell epitopes. Once again, amino acid sequence representation was at least as effective as using properties. Assessment of novel epitope predictions awaits experimental verification.

Suggested Citation

  • Xiao Yuanyuan & Segal Mark R, 2005. "Prediction of Genomewide Conserved Epitope Profiles of HIV-1: Classifier Choice and Peptide Representation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-36, September.
  • Handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:25
    DOI: 10.2202/1544-6115.1158
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1158
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.