IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v3y2004i1n1.html
   My bibliography  Save this article

Using Alpha Wisely: Improving Power to Detect Multiple QTL

Author

Listed:
  • Simonsen Katy L

    (Purdue University)

  • McIntyre Lauren M

    (Purdue University)

Abstract

The increase in the number of available markers for many experimental populations has led to QTL studies with ever increasing marker numbers and densities. The resulting conundrum is that as marker density increases, so does the multiple testing problem. It is important to re-examine the detection of multiple QTL in light of increasing marker density. We explore through simulation whether existing methods have achieved the maximum possible power for detecting multiple QTL and whether increasing the marker density is an effective strategy for locating multiple QTL. In addition to existing methods, such as the maximum, the CET, and the Benjamini-Hochberg and Benjamini-Yekutieli procedures, we propose and evaluate the complete set of order statistics with their corresponding empirical joint distribution. We examine these statistics in conjunction with a novel application of the alpha-spending approach, providing a less conservative solution to the problem of controlling the false discovery rate (FDR) in multiple tests. We conducted a simulation study to assess the relative power of these approaches as well as their ability to control FDR. We find that several of the new approaches have a reasonable FDR, and can substantially improve the experimenter's ability to detect multiple QTL compared to existing approaches in many cases; however, the Benjamini-Hochberg procedure remains a very reasonable choice. The methods are applied to a nine-trait Oat vernalization dataset.

Suggested Citation

  • Simonsen Katy L & McIntyre Lauren M, 2004. "Using Alpha Wisely: Improving Power to Detect Multiple QTL," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-26, February.
  • Handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:1
    DOI: 10.2202/1544-6115.1023
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1023
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Grazier G'Sell & Stefan Wager & Alexandra Chouldechova & Robert Tibshirani, 2016. "Sequential selection procedures and false discovery rate control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 423-444, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.