IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v15y2016i2p107-122n6.html
   My bibliography  Save this article

A graph theoretical approach to data fusion

Author

Listed:
  • Žurauskienė Justina

    (Theoretical Systems Biology Group, Centre for Bioinformatics, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK)

  • Kirk Paul D.W.

    (MRC Biostatistics Unit, Cambridge, CB2 0SR, Cambridge, UK)

  • Stumpf Michael P.H.

    (Theoretical Systems Biology Group, Centre for Bioinformatics, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK)

Abstract

The rapid development of high throughput experimental techniques has resulted in a growing diversity of genomic datasets being produced and requiring analysis. Therefore, it is increasingly being recognized that we can gain deeper understanding about underlying biology by combining the insights obtained from multiple, diverse datasets. Thus we propose a novel scalable computational approach to unsupervised data fusion. Our technique exploits network representations of the data to identify similarities among the datasets. We may work within the Bayesian formalism, using Bayesian nonparametric approaches to model each dataset; or (for fast, approximate, and massive scale data fusion) can naturally switch to more heuristic modeling techniques. An advantage of the proposed approach is that each dataset can initially be modeled independently (in parallel), before applying a fast post-processing step to perform data integration. This allows us to incorporate new experimental data in an online fashion, without having to rerun all of the analysis. We first demonstrate the applicability of our tool on artificial data, and then on examples from the literature, which include yeast cell cycle, breast cancer and sporadic inclusion body myositis datasets.

Suggested Citation

  • Žurauskienė Justina & Kirk Paul D.W. & Stumpf Michael P.H., 2016. "A graph theoretical approach to data fusion," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 107-122, April.
  • Handle: RePEc:bpj:sagmbi:v:15:y:2016:i:2:p:107-122:n:6
    DOI: 10.1515/sagmb-2016-0016
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2016-0016
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2016-0016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manikandan Narayanan & Adrian Vetta & Eric E Schadt & Jun Zhu, 2010. "Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorit S. Hochbaum, 2013. "A Polynomial Time Algorithm for Rayleigh Ratio on Discrete Variables: Replacing Spectral Techniques for Expander Ratio, Normalized Cut, and Cheeger Constant," Operations Research, INFORMS, vol. 61(1), pages 184-198, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:15:y:2016:i:2:p:107-122:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.