IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v14y2015i3p243-252n2.html
   My bibliography  Save this article

A mutual information estimator with exponentially decaying bias

Author

Listed:
  • Zhang Zhiyi

    (Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Zheng Lukun

    (Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

Abstract

A nonparametric estimator of mutual information is proposed and is shown to have asymptotic normality and efficiency, and a bias decaying exponentially in sample size. The asymptotic normality and the rapidly decaying bias together offer a viable inferential tool for assessing mutual information between two random elements on finite alphabets where the maximum likelihood estimator of mutual information greatly inflates the probability of type I error. The proposed estimator is illustrated by three examples in which the association between a pair of genes is assessed based on their expression levels. Several results of simulation study are also provided.

Suggested Citation

  • Zhang Zhiyi & Zheng Lukun, 2015. "A mutual information estimator with exponentially decaying bias," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 243-252, June.
  • Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:3:p:243-252:n:2
    DOI: 10.1515/sagmb-2014-0047
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2014-0047
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2014-0047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:14:y:2015:i:3:p:243-252:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.