IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i3n9.html
   My bibliography  Save this article

Normalization, bias correction, and peak calling for ChIP-seq

Author

Listed:
  • Diaz Aaron

    (University of California, San Francisco)

  • Park Kiyoub

    (University of California, San Francisco)

  • Lim Daniel A.

    (University of California, San Francisco)

  • Song Jun S.

    (University of California, San Francisco)

Abstract

Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods.

Suggested Citation

  • Diaz Aaron & Park Kiyoub & Lim Daniel A. & Song Jun S., 2012. "Normalization, bias correction, and peak calling for ChIP-seq," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-31, March.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:9
    DOI: 10.1515/1544-6115.1750
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1544-6115.1750
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1544-6115.1750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Bailey & Pawel Krajewski & Istvan Ladunga & Celine Lefebvre & Qunhua Li & Tao Liu & Pedro Madrigal & Cenny Taslim & Jie Zhang, 2013. "Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-8, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.