IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n36.html
   My bibliography  Save this article

Surveying the Manifold Divergence of an Entire Protein Class for Statistical Clues to Underlying Biochemical Mechanisms

Author

Listed:
  • Neuwald Andrew F.

Abstract

Certain residues have no known function yet are co-conserved across distantly related protein families and diverse organisms, suggesting that they perform critical roles associated with as-yet-unidentified molecular properties and mechanisms. This raises the question of how to obtain additional clues regarding these mysterious biochemical phenomena with a view to formulating experimentally testable hypotheses. One approach is to access the implicit biochemical information encoded within the vast amount of genomic sequence data now becoming available. Here, a new Gibbs sampling strategy is formulated and implemented that can partition hundreds of thousands of sequences within a major protein class into multiple, functionally-divergent categories based on those pattern residues that best discriminate between categories. The sampler precisely defines the partition and pattern for each category by explicitly modeling unrelated, non-functional and related-yet-divergent proteins that would otherwise obscure the analysis. To aid biological interpretation, auxiliary routines can characterize pattern residues within available crystal structures and identify those structures most likely to shed light on the roles of pattern residues. This approach can be used to define and annotate automatically subgroup-specific conserved domain profiles based on statistically-rigorous empirical criteria rather than on the subjective and labor-intensive process of manual curation. Incorporating such profiles into domain database search sites (such as the NCBI BLAST site) will provide biologists with previously inaccessible molecular information useful for hypothesis generation and experimental design. Analyses of P-loop GTPases and of AAA+ ATPases illustrate the sampler’s ability to obtain such information.

Suggested Citation

  • Neuwald Andrew F., 2011. "Surveying the Manifold Divergence of an Entire Protein Class for Statistical Clues to Underlying Biochemical Mechanisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, August.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:36
    DOI: 10.2202/1544-6115.1666
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1666
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter D. Grünwald, 2007. "The Minimum Description Length Principle," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262072815, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neuwald Andrew F., 2014. "Protein domain hierarchy Gibbs sampling strategies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 497-517, August.
    2. Andrew F Neuwald & Stephen F Altschul, 2016. "Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Neuwald Andrew F., 2014. "Protein domain hierarchy Gibbs sampling strategies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 497-517, August.
    3. Das Ujjwal & Ebrahimi Nader, 2018. "A New Method For Covariate Selection In Cox Model," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 297-314, June.
    4. Zelaya Mendizábal, Valentina & Boullé, Marc & Rossi, Fabrice, 2023. "Fast and fully-automated histograms for large-scale data sets," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Ujjwal Das & Nader Ebrahimi, 2018. "A New Method For Covariate Selection In Cox Model," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 297-314, June.
    6. Yurij L. Katchanov & Natalia A. Shmatko, 2014. "Complexity-Based Modeling of Scientific Capital: An Outline of Mathematical Theory," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, October.
    7. Kris V Parag & Christl A Donnelly, 2020. "Using information theory to optimise epidemic models for real-time prediction and estimation," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-20, July.
    8. Mullins, Joshua & Mahadevan, Sankaran, 2014. "Variable-fidelity model selection for stochastic simulation," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 40-52.
    9. K. Vela Velupillai, 2010. "The Algorithmic Revolution in the Social Sciences: Mathematical Economics, Game Theory and Statistical Inference," ASSRU Discussion Papers 1005, ASSRU - Algorithmic Social Science Research Unit.
    10. Andrew F Neuwald & Stephen F Altschul, 2016. "Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-21, May.
    11. Alperen Bektas & Valentino Piana & René Schumann, 2021. "A meso-level empirical validation approach for agent-based computational economic models drawing on micro-data: a use case with a mobility mode-choice model," SN Business & Economics, Springer, vol. 1(6), pages 1-25, June.
    12. Löcherbach, Eva & Orlandi, Enza, 2011. "Neighborhood radius estimation for variable-neighborhood random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2151-2185, September.
    13. Vittoria Bruni & Michela Tartaglione & Domenico Vitulano, 2020. "A Signal Complexity-Based Approach for AM–FM Signal Modes Counting," Mathematics, MDPI, vol. 8(12), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.