IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n10.html
   My bibliography  Save this article

Large Sample Approximations of Probabilities of Correct Evolutionary Tree Estimation and Biases of Maximum Likelihood Estimation

Author

Listed:
  • Susko Edward

Abstract

Simulation studies have been the main way in which properties of maximum likelihood estimation of evolutionary trees from aligned sequence data have been studied. Because trees are unusual parameters and because fitting is computationally intensive, such studies have a heavy computational cost. We develop an asymptotic framework that can be used to obtain probabilities of correct topological reconstruction and study other properties of likelihood methods when a single split is poorly resolved. Simulations suggest that while approximations to log likelihood differences are better for less well-resolved topologies, approximations to probabilities of correct reconstruction are generally good. We used the approximations to investigate biases in estimation and found that maximum likelihood estimation has a long-branch-repels bias. This differs from the long-branch-attracts bias often reported in the literature because it is a different form of bias. For maximum likelihood estimation, usually long-branch-attracts bias results arise in the presence of model misspecification and are a form of statistical inconsistency where the estimated tree converges upon an incorrect tree with long edges together. Here, by bias we mean a tendency to favour a particular topology when data are generated from a four-taxon star tree. While we find a tendency to favour the tree with long branches apart, with more extreme long edges, a strong small sequence-length long-branch-attracts bias overwhelms the long-branch-repels bias. The long-branch-repels bias generalizes to five and six taxa in the sense that subtrees containing taxa that are all distant from the poorly resolved split repel each other.

Suggested Citation

  • Susko Edward, 2011. "Large Sample Approximations of Probabilities of Correct Evolutionary Tree Estimation and Biases of Maximum Likelihood Estimation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, February.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:10
    DOI: 10.2202/1544-6115.1626
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1626
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.