IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v9y2003i1p27-38n3.html
   My bibliography  Save this article

A partial sampling method applied to the Kusuoka approximation

Author

Listed:
  • Ninomiya Syoiti

Abstract

The Kusuoka approximation is a new simulation scheme for diffusion processes which are solutions of SDE with smooth coefficients. The author had reported that the Kusuoka approximation realizes several thousands times faster calculation of some financial derivative pricing problems than the Euler-Maruyama approximation does. In this paper, the author applied TBBA to the Kusuoka approximation and succeeded in several hundreds times faster calculation than naive Monte Carlo sampling.

Suggested Citation

  • Ninomiya Syoiti, 2003. "A partial sampling method applied to the Kusuoka approximation," Monte Carlo Methods and Applications, De Gruyter, vol. 9(1), pages 27-38, January.
  • Handle: RePEc:bpj:mcmeap:v:9:y:2003:i:1:p:27-38:n:3
    DOI: 10.1515/156939603322587443
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/156939603322587443
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/156939603322587443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Ninomiya & S. Tezuka, 1996. "Toward real-time pricing of complex financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 1-20.
    2. Crisan Dan & Lyons Terry, 2002. "Minimal Entropy Approximations and Optimal Algorithms," Monte Carlo Methods and Applications, De Gruyter, vol. 8(4), pages 343-356, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josh Lerner, 2002. "Where Does State Street Lead? A First Look at Finance Patents, 1971 to 2000," Journal of Finance, American Finance Association, vol. 57(2), pages 901-930, April.
    2. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    3. Eichler Andreas & Leobacher Gunther & Zellinger Heidrun, 2011. "Calibration of financial models using quasi-Monte Carlo," Monte Carlo Methods and Applications, De Gruyter, vol. 17(2), pages 99-131, January.
    4. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    5. Xiaoqun Wang, 2006. "On the Effects of Dimension Reduction Techniques on Some High-Dimensional Problems in Finance," Operations Research, INFORMS, vol. 54(6), pages 1063-1078, December.
    6. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    7. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    8. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    9. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    10. Tsutomu Tamura, 2005. "Comparison of randomization techniques for low-discrepancy sequences in finance," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(3), pages 227-244, September.
    11. Ninomiya, Syoiti, 2003. "A new simulation scheme of diffusion processes: application of the Kusuoka approximation to finance problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 479-486.
    12. Yu-Ying Tzeng & Paul M. Beaumont & Giray Ökten, 2018. "Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 55-77, June.
    13. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Bayousef Manal & Mascagni Michael, 2019. "A computational investigation of the optimal Halton sequence in QMC applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 187-207, September.
    15. Harase Shin, 2019. "Comparison of Sobol’ sequences in financial applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 61-74, March.
    16. Gerstner, Thomas & Griebel, Michael & Holtz, Markus, 2009. "Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 434-446, June.
    17. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
    18. Fredrik Åkesson & John P. Lehoczky, 2000. "Path Generation for Quasi-Monte Carlo Simulation of Mortgage-Backed Securities," Management Science, INFORMS, vol. 46(9), pages 1171-1187, September.
    19. repec:wyi:journl:002173 is not listed on IDEAS
    20. Phelim P. Boyle & Adam W. Kolkiewicz & Ken Seng Tan, 2013. "Pricing Bermudan options using low-discrepancy mesh methods," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 841-860, May.
    21. Chaudru de Raynal, P.E. & Garcia Trillos, C.A., 2015. "A cubature based algorithm to solve decoupled McKean–Vlasov forward–backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2206-2255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:9:y:2003:i:1:p:27-38:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.