IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v24y2018i2p139-145n6.html
   My bibliography  Save this article

Remarks on randomization of quasi-random numbers

Author

Listed:
  • Ermakov Sergej M.

    (The Faculty of Mathematics and Mechanics, St. Petersburg State University, Bibliotechnay Sq. 2 Petrodvorets 198904, St. Petersburg, Russia)

  • Leora Svetlana N.

    (The Faculty of Mathematics and Mechanics, St. Petersburg State University, Bibliotechnay Sq. 2 Petrodvorets 198904, St. Petersburg, Russia)

Abstract

In this paper we discuss estimation of the quasi-Monte Carlo methods error in the case of calculation of high-order integrals. Quasi-random Halton sequences are considered as a special case. Randomization of these sequences by the random shift method turns out to lead to well-known random quadrature formulas with one free node. Some new properties of such formulas are pointed out. The subject is illustrated by a number of numerical examples.

Suggested Citation

  • Ermakov Sergej M. & Leora Svetlana N., 2018. "Remarks on randomization of quasi-random numbers," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 139-145, June.
  • Handle: RePEc:bpj:mcmeap:v:24:y:2018:i:2:p:139-145:n:6
    DOI: 10.1515/mcma-2018-0012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2018-0012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2018-0012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:24:y:2018:i:2:p:139-145:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.