Author
Abstract
The classical model of probability theory, due principally to Kolmogorov, defines probability as a totally-one measure on a sigma-algebra of subsets (events) of a given set (the sample space), and random variables as real-valued functions on the sample space, such that the inverse images of all Borel sets are events. From this model, all the results of probability theory are derived. However, the assertion that any given concrete situation is subject to probability theory is a scientific hypothesis verifiable only experimentally, by appropriate sampling, and never totally certain. Furthermore classical probability theory allows for the possibility of “outliers”—sampled values which are misleading. In particular, Kolmogorov's Strong Law of Large Numbers asserts that, if, as is usually the case, a random variable has a finite expectation (its integral over the sample space), then the average value of N independently sampled values of this function converges to the expectation with probability 1 as N tends to infinity. This implies that there may be sample sequences (belonging to a set of total probability 0) for which this convergence does not occur.It is proposed to derive a large and important part of the classical probabilistic results, on the simple basis that the sample sequences are so constructed that the corresponding average values do converge to the mathematical expectation as N tends to infinity, for all Riemann-integrable random variables. A number of important results have already been proved, and further investigations are proceeding with much promise. By this device, the stochastic nature of some concrete situations is no longer a likely scientific hypothesis, but a proven mathematical fact, and the problem of outliers is eliminated. This model may be referred-to as “quasi-probability theory”; it is particularly appropriate for the large class of computations that are referred-to as “quasi-Monte-Carlo”.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:10:y:2004:i:3-4:p:183-196:n:1001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.