IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v14y2018i3p143-157n2.html
   My bibliography  Save this article

Bayesian hierarchical models for predicting individual performance in soccer

Author

Listed:
  • Egidi Leonardo

    (Department of Business, Economics, Mathematics and Statistics ‘Bruno de Finetti’, University of Trieste, Trieste, TS, Italy, e-mail: leoegidi@hotmail.it)

  • Gabry Jonah

    (Department of Statistics, Columbia University, New York, NY, USA)

Abstract

Although there is no consensus on how to measure and quantify individual performance in any sport, there has been less development in this area for soccer than for other major sports. And only once this measurement is defined, does modeling for predictive purposes make sense. We use the player ratings provided by a popular Italian fantasy soccer game as proxies for the players’ performance; we discuss the merits and flaws of a variety of hierarchical Bayesian models for predicting these ratings, comparing the models on their predictive accuracy on hold-out data. Our central goals are to explore what can be accomplished with a simple freely available dataset comprising only a few variables from the 2015–2016 season in the top Italian league, Serie A, and to focus on a small number of interesting modeling and prediction questions that arise. Among these, we highlight the importance of modeling the missing observations and we propose two models designed for this task. We validate our models through graphical posterior predictive checks and we provide out-of-sample predictions for the second half of the season, using the first half as a training set. We use Stan to sample from the posterior distributions via Markov chain Monte Carlo.

Suggested Citation

  • Egidi Leonardo & Gabry Jonah, 2018. "Bayesian hierarchical models for predicting individual performance in soccer," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(3), pages 143-157, September.
  • Handle: RePEc:bpj:jqsprt:v:14:y:2018:i:3:p:143-157:n:2
    DOI: 10.1515/jqas-2017-0066
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2017-0066
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2017-0066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Griffin Jim E. & Hinoveanu Laurenţiu C. & Hopker James G., 2022. "Bayesian modelling of elite sporting performance with large databases," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(4), pages 253-268, December.
    2. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:14:y:2018:i:3:p:143-157:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.