IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v8y2012i1n22.html
   My bibliography  Save this article

Testing the assumptions for the analysis of survival data arising from a prevalent cohort study with follow-up

Author

Listed:
  • Addona Vittorio

    (Macalester College)

  • Atherton Juli

    (Université du Québec à Montréal)

  • Wolfson David B.

    (McGill University)

Abstract

In a prevalent cohort study with follow-up subjects identified as prevalent cases are followed until failure (defined suitably) or censoring. When the dates of the initiating events of these prevalent cases are ascertainable, each observed datum point consists of a backward recurrence time and a possibly censored forward recurrence time. Their sum is well known to be the left truncated lifetime. It is common to term these left truncated lifetimes "length biased" if the initiating event times of all the incident cases (including those not observed through the prevalent sampling scheme) follow a stationary Poisson process. Statistical inference is then said to be carried out under stationarity. Whether or not stationarity holds, a further assumption needed for estimation of the incident survivor function is the independence of the lifetimes and their accompanying truncation times. That is, it must be assumed that survival does not depend on the calendar date of the initiating event. We show how this assumption may be checked under stationarity, even though only the backward recurrence times and their associated (possibly censored) forward recurrence times are observed. We prove that independence of the lifetimes and truncation times is equivalent to equality in distribution of the backward and forward recurrence times, and exploit this equivalence as a means of testing the former hypothesis. A simulation study is conducted to investigate the power and Type 1 error rate of our proposed tests, which include a bootstrap procedure that takes into account the pairwise dependence between the forward and backward recurrence times, as well as the potential censoring of only one of the members of each pair. We illustrate our methods using data from the Canadian Study of Health and Aging. We also point out an equivalence of the problem presented here to a non-standard changepoint problem.

Suggested Citation

  • Addona Vittorio & Atherton Juli & Wolfson David B., 2012. "Testing the assumptions for the analysis of survival data arising from a prevalent cohort study with follow-up," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-21, July.
  • Handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:22
    DOI: 10.1515/1557-4679.1419
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1557-4679.1419
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1557-4679.1419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. H. McVittie & D. B. Wolfson & D. A. Stephens, 2020. "Parametric modelling of prevalent cohort data with uncertainty in the measurement of the initial onset date," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 389-401, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.