IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i2n4.html
   My bibliography  Save this article

Evaluating the Efficacy of a Malaria Vaccine

Author

Listed:
  • Small Dylan S.

    (University of Pennsylvania)

  • Cheng Jing

    (University of Florida)

  • Ten Have Thomas R.

    (University of Pennsylvania)

Abstract

Malaria is a major public health problem. An effective vaccine against malaria is actively being sought. We formulate a potential outcomes definition of the efficacy of a malaria vaccine for preventing fever. A challenge in estimating this efficacy is that there is no sure way to determine whether a fever was caused by malaria. We study the properties of two approaches for estimating efficacy: (1) use a deterministic case definition of a malaria caused fever as the conjunction of fever and parasite density above a certain cutoff; (2) use a probabilistic case definition in which the probability that each fever was caused by malaria is estimated. We compare these approaches in a simulation study and find that both approaches can potentially have large biases. We suggest a strategy for choosing an estimator based on the investigator's prior knowledge about the area in which the trial is being conducted and the range of vaccine efficacies over which the investigator would like the estimator to have good properties.

Suggested Citation

  • Small Dylan S. & Cheng Jing & Ten Have Thomas R., 2010. "Evaluating the Efficacy of a Malaria Vaccine," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-22, February.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:4
    DOI: 10.2202/1557-4679.1201
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1201
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dean Follmann & Michael P. Fay & Michael Proschan, 2009. "Chop-Lump Tests for Vaccine Trials," Biometrics, The International Biometric Society, vol. 65(3), pages 885-893, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Cheng & Dylan S. Small, 2021. "Semiparametric models and inference for the effect of a treatment when the outcome is nonnegative with clumping at zero," Biometrics, The International Biometric Society, vol. 77(4), pages 1187-1201, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.