IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v3y2007i1n12.html
   My bibliography  Save this article

Multiple Imputation and Random Forests (MIRF) for Unobservable, High-Dimensional Data

Author

Listed:
  • Nonyane Bareng A. S.

    (University of Massachusetts, Amherst)

  • Foulkes Andrea S.

    (University of Massachusetts, Amherst)

Abstract

Understanding the genetic underpinnings to complex diseases requires consideration of sophisticated analytical methods designed to uncover intricate associations across multiple predictor variables. At the same time, knowledge of whether single nucleotide polymorphisms within a gene are on the same (in cis) or on different (in trans) chromosomal copies, may provide crucial information about measures of disease progression. In association studies of unrelated individuals, allelic phase is generally unobservable, generating an additional analytical challenge. In this manuscript, we describe a novel approach that combines multiple imputation and random forests for this high-dimensional, unobservable data setting. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is presented. A simulation study is also presented to characterize method performance.

Suggested Citation

  • Nonyane Bareng A. S. & Foulkes Andrea S., 2007. "Multiple Imputation and Random Forests (MIRF) for Unobservable, High-Dimensional Data," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-19, August.
  • Handle: RePEc:bpj:ijbist:v:3:y:2007:i:1:n:12
    DOI: 10.2202/1557-4679.1049
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1049
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razzak Humera & Heumann Christian, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    2. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    3. Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:3:y:2007:i:1:n:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.