IDEAS home Printed from https://ideas.repec.org/a/bpj/econoa/v18y2024i1p17n1022.html
   My bibliography  Save this article

Panel Technical Efficiency of Korean Companies in the Energy Sector based on Digital Capabilities

Author

Listed:
  • Choi Jong Woo

    (Department of Agricultural Economics and Rural Development, Seoul National University, Seoul 08826, Korea)

  • Park Chankook

    (Department of Future Energy Research, Korea Energy Economics Institute, Ulsan 44543, Korea)

Abstract

Digitalization is a crucial driver of enhanced energy system efficiency, facilitating the energy transition and offering a gateway for technology companies to enter the sector. This study, employing stochastic frontier analysis as the chosen methodology, investigates the efficiency challenges faced by companies venturing into the energy industry with a digital technology focus. Our empirical analysis reveals a positive correlation between higher total assets and increased research and development expenditures, signifying the vital importance of talent acquisition and securing R&D funding. Additionally, it is noteworthy that smaller companies experienced a more pronounced negative impact of COVID-19 on their efficiency. These findings contribute to refining digitalization strategies in the energy industry, emphasizing the role of efficiency from a corporate perspective.

Suggested Citation

  • Choi Jong Woo & Park Chankook, 2024. "Panel Technical Efficiency of Korean Companies in the Energy Sector based on Digital Capabilities," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-17.
  • Handle: RePEc:bpj:econoa:v:18:y:2024:i:1:p:17:n:1022
    DOI: 10.1515/econ-2022-0076
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/econ-2022-0076
    Download Restriction: no

    File URL: https://libkey.io/10.1515/econ-2022-0076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rikkonen, Pasi & Tapio, Petri & Rintamäki, Heidi, 2019. "Visions for small-scale renewable energy production on Finnish farms – A Delphi study on the opportunities for new business," Energy Policy, Elsevier, vol. 129(C), pages 939-948.
    2. Midttun, Alte & Piccini, Proadpran Boonprasurd, 2017. "Facing the climate and digital challenge: European energy industry from boom to crisis and transformation," Energy Policy, Elsevier, vol. 108(C), pages 330-343.
    3. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    4. Jamasb, Tooraj & Nillesen, Paul & Pollitt, Michael, 2004. "Strategic behaviour under regulatory benchmarking," Energy Economics, Elsevier, vol. 26(5), pages 825-843, September.
    5. Md Zobaer Hasan & Anton Abdulbasah Kamil & Adli Mustafa & Md Azizul Baten, 2012. "A Cobb Douglas Stochastic Frontier Model on Measuring Domestic Bank Efficiency in Malaysia," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-5, August.
    6. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    7. Inyoung Park & Jieon Lee & Jungwoo Nam & Yuri Jo & Daeho Lee, 2022. "Which networking strategy improves ICT startup companies' technical efficiency?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2434-2443, September.
    8. Heymann, Fabian & Milojevic, Tatjana & Covatariu, Andrei & Verma, Piyush, 2023. "Digitalization in decarbonizing electricity systems – Phenomena, regional aspects, stakeholders, use cases, challenges and policy options," Energy, Elsevier, vol. 262(PB).
    9. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    10. Jörg Thomä & Volker Zimmermann, 2020. "Interactive learning — The key to innovation in non-R&D-intensive SMEs? A cluster analysis approach," Journal of Small Business Management, Taylor & Francis Journals, vol. 58(4), pages 747-776, July.
    11. Mehdi Farsi & Massimo Filippini, 2004. "Regulation and Measuring Cost-Efficiency with Panel Data Models: Application to Electricity Distribution Utilities," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(1), pages 1-19, August.
    12. Raczka, Jan, 2001. "Explaining the performance of heat plants in Poland," Energy Economics, Elsevier, vol. 23(4), pages 355-370, July.
    13. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    14. Antonio Estache & MartÌn A. Rossi & Christian A. Ruzzier, 2004. "The Case for International Coordination of Electricity Regulation: Evidence from the Measurement of Efficiency in South America," Journal of Regulatory Economics, Springer, vol. 25(3), pages 271-295, May.
    15. Michel A. Habib & Alexander Ljungqvist, 2005. "Firm Value and Managerial Incentives: A Stochastic Frontier Approach," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2053-2094, November.
    16. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    17. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    18. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    19. Fu, Xiaolan & Yang, Qing Gong, 2009. "Exploring the cross-country gap in patenting: A Stochastic Frontier Approach," Research Policy, Elsevier, vol. 38(7), pages 1203-1213, September.
    20. Chankook Park & Daeyoun Lee, 2021. "Analysis on new types of electric power businesses using a morphological box," Energy & Environment, , vol. 32(1), pages 113-133, February.
    21. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    22. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    23. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    24. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf, A. George & Barros, Carlos Pestana & Managi, Shunsuke, 2011. "Cost efficiency of Japanese steam power generation companies: A Bayesian comparison of random and fixed frontier models," Applied Energy, Elsevier, vol. 88(4), pages 1441-1446, April.
    2. Shrivastava, Naveen & Sharma, Seema & Chauhan, Kavita, 2012. "Efficiency assessment and benchmarking of thermal power plants in India," Energy Policy, Elsevier, vol. 40(C), pages 159-176.
    3. Barros, Carlos P. & Peypoch, Nicolas, 2007. "The determinants of cost efficiency of hydroelectric generating plants: A random frontier approach," Energy Policy, Elsevier, vol. 35(9), pages 4463-4470, September.
    4. Uwe Jensen & Hermann Gartner & Susanne Rässler, 2010. "Estimating German overqualification with stochastic earnings frontiers," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(1), pages 33-51, March.
    5. Barros, Carlos Pestana, 2008. "Efficiency analysis of hydroelectric generating plants: A case study for Portugal," Energy Economics, Elsevier, vol. 30(1), pages 59-75, January.
    6. Per J. Agrell & Mehdi Farsi & Massimo Filippini & Martin Koller, 2013. "Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems," Working Papers 0038, Swiss Economics.
    7. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    8. Briec, Walter & Peypoch, Nicolas & Ratsimbanierana, Hermann, 2011. "Productivity growth and biased technological change in hydroelectric dams," Energy Economics, Elsevier, vol. 33(5), pages 853-858, September.
    9. Giovanni Calice & Levent Kutlu & Ming Zeng, 2021. "Understanding US firm efficiency and its asset pricing implications," Empirical Economics, Springer, vol. 60(2), pages 803-827, February.
    10. Noel Uri, 2003. "The Effect of Incentive Regulation in Telecommunications in the United States," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(2), pages 169-191, May.
    11. Roy, Manish & Mazumder, Ritwik, 2016. "Technical Efficiency of Fish Catch in Traditional Fishing: A Study in Southern Assam," Journal of Regional Development and Planning, Rajarshi Majumder, vol. 5(1), pages 55-68.
    12. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    13. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    15. Edward Ebo ONUMAH & Bernhard BRÜMMER & Gabriele HÖRSTGEN-SCHWARK, 2010. "Productivity of the hired and family labour and determinants of technical inefficiency in Ghana's fish farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(2), pages 79-88.
    16. Henderson, Benjamin B. & Kingwell, Ross S., 2001. "An Investigation of the Technical and Allocative Efficiency of Broadacre Farmers," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125109, Australian Agricultural and Resource Economics Society.
    17. Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
    18. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    19. Federica VIGANO & Andrea SALUSTRI, 2015. "Matching profit and Non-profit Needs: How NPOs and Cooperative Contribute to Growth in Time of Crisis. A Quantitative Approach," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 86(1), pages 157-178, March.
    20. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:econoa:v:18:y:2024:i:1:p:17:n:1022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.