IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v7y2019i1p8n8.html
   My bibliography  Save this article

Estimating Causal Effects of New Treatments Despite Self-Selection: The Case of Experimental Medical Treatments

Author

Listed:
  • Hazlett Chad

    (Departments of Statistics and Political Science, University of California Los Angeles, Los Angeles, United States)

Abstract

Providing terminally ill patients with access to experimental treatments, as allowed by recent “right to try” laws and “expanded access” programs, poses a variety of ethical questions. While practitioners and investigators may assume it is impossible to learn the effects of these treatment without randomized trials, this paper describes a simple tool to estimate the effects of these experimental treatments on those who take them, despite the problem of selection into treatment, and without assumptions about the selection process. The key assumption is that the average outcome, such as survival, would remain stable over time in the absence of the new treatment. Such an assumption is unprovable, but can often be credibly judged by reference to historical data and by experts familiar with the disease and its treatment. Further, where this assumption may be violated, the result can be adjusted to account for a hypothesized change in the non-treatment outcome, or to conduct a sensitivity analysis. The method is simple to understand and implement, requiring just four numbers to form a point estimate. Such an approach can be used not only to learn which experimental treatments are promising, but also to warn us when treatments are actually harmful – especially when they might otherwise appear to be beneficial, as illustrated by example here. While this note focuses on experimental medical treatments as a motivating case, more generally this approach can be employed where a new treatment becomes available or has a large increase in uptake, where selection bias is a concern, and where an assumption on the change in average non-treatment outcome over time can credibly be imposed.

Suggested Citation

  • Hazlett Chad, 2019. "Estimating Causal Effects of New Treatments Despite Self-Selection: The Case of Experimental Medical Treatments," Journal of Causal Inference, De Gruyter, vol. 7(1), pages 1-8, March.
  • Handle: RePEc:bpj:causin:v:7:y:2019:i:1:p:8:n:8
    DOI: 10.1515/jci-2018-0019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2018-0019
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2018-0019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:7:y:2019:i:1:p:8:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.