IDEAS home Printed from https://ideas.repec.org/a/bot/rivsta/v78y2018i4p319-334.html
   My bibliography  Save this article

Estimation Of Dynamic Cumulative Past Entropy For Power Function Distribution

Author

Listed:
  • Enchakudiyil Ibrahim Abdul-Sathar

    (Department of Statistics, University of Kerala)

  • Glory Sathyanesan Sathyareji

    (Department of Statistics, University of Kerala)

Abstract

In this paper, we proposed MLE and Bayes estimators of parameters and DCPE for the two parameter power function distribution. Bayes estimators under different loss functions are obtained using Lindley approximation method and important sampling procedures. A real life data set and a Monte Carlo simulation are used to study the performance of the estimators derived in the article.

Suggested Citation

  • Enchakudiyil Ibrahim Abdul-Sathar & Glory Sathyanesan Sathyareji, 2018. "Estimation Of Dynamic Cumulative Past Entropy For Power Function Distribution," Statistica, Department of Statistics, University of Bologna, vol. 78(4), pages 319-334.
  • Handle: RePEc:bot:rivsta:v:78:y:2018:i:4:p:319-334
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iuliana Iatan & Mihăiţă Drăgan & Silvia Dedu & Vasile Preda, 2022. "Using Probabilistic Models for Data Compression," Mathematics, MDPI, vol. 10(20), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:rivsta:v:78:y:2018:i:4:p:319-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanna Galatà (email available below). General contact details of provider: https://edirc.repec.org/data/dsbolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.