IDEAS home Printed from https://ideas.repec.org/a/bot/rivsta/v74y2014i1p3-22.html
   My bibliography  Save this article

Testing normality of latent variables in the polychoric correlation

Author

Listed:
  • Carlos Almeida

    (Universidad de las Fuerzas Armadas - ESPE, Sangolqui - Ecuador)

  • Michel Mouchart

    (Université Catholique de Louvain - Belgium)

Abstract

This paper explores the feasibility of simultaneously facing three sources of complexity in Bayesian testing, namely (i) testing a parametric against a non-parametric alternative (ii) adjusting for partial observability (iii) developing a test under a Bayesian encompassing principle. Testing the normality of latent variables in the polychoric correlation model is taken as a case study. This paper starts from the specification of the model defining the polychoric correlation in the framework of manifest ordinal variables viewed as discretizations of underlying latent variables. Taking advantage of the fact that in this model, the marginal distributions of the latent variables are not identified, we use the approach of copula. Some identification issues are analysed. Next, we develop a Bayesian encompassing specification test for testing the Gaussianity of the underlying copula and consider the discretization model as a case of partial observability. The computational feasibility, the numerical stability and the discriminating power of the procedure are checked through a simulation experiment. An application completes the paper by illustrating the working of the procedure on a meta-analysis of clinical trials on acute migraine. The final section proposes, in the form of conclusions, an evaluation of the actual achievements of the paper

Suggested Citation

  • Carlos Almeida & Michel Mouchart, 2014. "Testing normality of latent variables in the polychoric correlation," Statistica, Department of Statistics, University of Bologna, vol. 74(1), pages 3-22.
  • Handle: RePEc:bot:rivsta:v:74:y:2014:i:1:p:3-22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    2. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    3. Hernández-Cedeño, Isaac & Nelson, Pamela F. & Anglés-Hernández, Marisol, 2021. "Social and environmental conflict analysis on energy projects: Bayesian predictive network approach," Energy Policy, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:rivsta:v:74:y:2014:i:1:p:3-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanna Galatà (email available below). General contact details of provider: https://edirc.repec.org/data/dsbolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.