IDEAS home Printed from https://ideas.repec.org/a/blv/journl/v33y2020i1p69-91.html
   My bibliography  Save this article

Modelos de Machine Learning para el análisis y pronóstico de la situación financiera de bancos – Caso boliviano

Author

Listed:
  • Jonnathan R. Cáceres Santos

    (Banco Central de Bolivia)

Abstract

Con el objeto de analizar y pronosticar el comportamiento financiero de los principales bancos de Bolivia (período enero 2001 a febrero 2020), se estimaron modelos de machine learning: redes neuronales supervisadas, redes neuronales no supervisadas y máquinas de vectores de soporte. Los resultados obtenidos destacan la precisión del 99% alcanzada por el modelo de redes neuronales supervisadas y la coincidente clasificación del modelo de redes neuronales no supervisadas. El modelo de máquinas de vectores de soporte alcanzó una precisión de 85,1%. Los modelos propuestos se constituyen en herramientas robustas para el análisis y pronóstico de riesgos financieros, puesto que tienen la capacidad de abstraer patrones recurrentes y generalizar información no observada. Asimismo, evidencian su importancia para el diseño, propuesta y la evaluación de políticas macroprudenciales orientadas a preservar la estabilidad financiera.

Suggested Citation

  • Jonnathan R. Cáceres Santos, 2020. "Modelos de Machine Learning para el análisis y pronóstico de la situación financiera de bancos – Caso boliviano," Revista de Análisis del BCB, Banco Central de Bolivia, vol. 33(1), pages 69-91, July - De.
  • Handle: RePEc:blv:journl:v:33:y:2020:i:1:p:69-91
    as

    Download full text from publisher

    File URL: https://www.bcb.gob.bo/webdocs/publicacionesbcb/revista_analisis/ra_vol33/articulo_3_v33.pdf
    Download Restriction: no

    File URL: https://www.bcb.gob.bo/?q=pub_revista-analisis
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Predicción; redes neuronales;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:blv:journl:v:33:y:2020:i:1:p:69-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jose Antonio Caballero Pelaez (email available below). General contact details of provider: https://edirc.repec.org/data/bcbgvbo.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.