IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v2y2013i1p52-72.html
   My bibliography  Save this article

Electrolytes for solid oxide fuel cells

Author

Listed:
  • F. M. L. Figueiredo
  • F. M. B. Marques

Abstract

Solid oxide fuel cells are extremely flexible energy conversion systems able to operate within a broad temperature range (500–1000°C), with a variety of fuels (from hydrogen to liquid fuels), including concepts able to be scaled to deliver power from the milliwatt to the megawatt range. The solid electrolyte, as an ionic charge carrier, is one central component that determines the operational characteristics of the fuel cell system, namely the working temperature. Design of new electrolytes includes manipulation of ionic defects concentration and mobility. Here, particular attention is given to the impact on ionic transport of point defects in various types of structures, dislocations, grain boundaries, and heterostructure interfaces. Properties derived from structural and compositional characteristics, but also from microstructural features, including recent complex engineered thin films, are reviewed. Major families of materials are compared with respect to key performance parameters. Finally, the effects of composition, structure, microstructure, and strain on ionic transport are assessed as complementary tools for future developments in solid electrolyte materials. This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Energy Research & Innovation > Science and Materials

Suggested Citation

  • F. M. L. Figueiredo & F. M. B. Marques, 2013. "Electrolytes for solid oxide fuel cells," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 52-72, January.
  • Handle: RePEc:bla:wireae:v:2:y:2013:i:1:p:52-72
    DOI: 10.1002/wene.23
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.23
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.23?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sami Jouttijärvi & Muhammad Imran Asghar & Peter D. Lund, 2018. "Microscopic techniques for analysis of ceramic fuel cells," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:2:y:2013:i:1:p:52-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.