IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v79y2025i1ne12354.html
   My bibliography  Save this article

Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root

Author

Listed:
  • Haozhe Jiang
  • Ostap Okhrin
  • Michael Rockinger

Abstract

This paper introduces an artificial neural network (ANN) approach to estimate the autoregressive process AR(1) when the autocorrelation parameter is near one. Traditional ordinary least squares (OLS) estimators suffer from biases in small samples, necessitating various correction methods proposed in the literature. The ANN, trained on simulated data, outperforms these methods due to its nonlinear structure. Unlike competitors requiring simulations for bias corrections based on specific sample sizes, the ANN directly incorporates sample size as input, eliminating the need for repeated simulations. Stability tests involve exploring different ANN architectures and activation functions and robustness to varying distributions of the process innovations. Empirical applications on financial and industrial data highlight significant differences among methods, with ANN estimates suggesting lower persistence than other approaches.

Suggested Citation

  • Haozhe Jiang & Ostap Okhrin & Michael Rockinger, 2025. "Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 79(1), February.
  • Handle: RePEc:bla:stanee:v:79:y:2025:i:1:n:e12354
    DOI: 10.1111/stan.12354
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12354
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:79:y:2025:i:1:n:e12354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.