IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v79y2025i1ne12349.html
   My bibliography  Save this article

Hurdle GARCH models for nonnegative time series

Author

Listed:
  • Šárka Hudecová
  • Michal Pešta

Abstract

The studied semi‐continuous time series contains a nonnegligible portion of observations equal to a single value (typically zero), whereas the remaining outcomes are strictly positive. A novel class of hurdle GARCH models having dependent zero occurrences is considered and the classical maximum likelihood estimation is employed. However, a distribution of the underlying time series innovations does not belong into the exponential family, which together with the dependence of innovations makes the whole inference nonstandard. Consistency and asymptotic normality of the estimator are derived. Efficiency of the estimation is elaborated and compared with the alternative quasi‐likelihood approach. A bootstrap prediction is also discussed. An analysis of sparse nonlife insurance claims is performed.

Suggested Citation

  • Šárka Hudecová & Michal Pešta, 2025. "Hurdle GARCH models for nonnegative time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 79(1), February.
  • Handle: RePEc:bla:stanee:v:79:y:2025:i:1:n:e12349
    DOI: 10.1111/stan.12349
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12349
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:79:y:2025:i:1:n:e12349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.