IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i2p302-309.html
   My bibliography  Save this article

Franklin's randomized response model with correlated scrambled variables

Author

Listed:
  • Christopher Aguirre‐Hamilton
  • Stephen A. Sedory
  • Sarjinder Singh

Abstract

We propose two types of estimators that are analogous to Franklin's model. One estimator is derived by concentrating on the row averages of the responses, and another is obtained by concentrating on the column averages of the observed responses. In the latter case we have two responses per respondent from a bi‐variate normal distribution. The proposed estimator based on row averages, by making use of negatively correlated random numbers from a multivariate density, is always more efficient than the corresponding Franklin's estimator. In the case of the proposed estimator based on column averages, we found that the use of positively correlated random numbers from a bivariate density can lead to the most efficient estimator. We also discuss results which are observed by making use of three responses per respondent. When the three responses are recorded, three independent normal densities are derived from three correlated variables. The findings are supported based on analytical, numerical, and simulation studies. A simulation study was done to determine the minimum sample size required to produce nonnegative estimates of the population proportion of a sensitive characteristic, and to investigate the 95% nominal coverage by the interval estimates. Ultimately at the end, one best estimator is suggested. A very neat and clean derivations of theoretical results and discussion of numerical and simulation studies are documented in Data S1.

Suggested Citation

  • Christopher Aguirre‐Hamilton & Stephen A. Sedory & Sarjinder Singh, 2024. "Franklin's randomized response model with correlated scrambled variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 302-309, May.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:2:p:302-309
    DOI: 10.1111/stan.12318
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12318
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarjinder Singh & Stephen Sedory, 2013. "A new randomized response device for sensitive characteristics: an application of the negative hypergeometic distribution," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 3-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kajal Dihidar & Manjima Bhattacharya, 2017. "Estimating Sensitive Population Proportion Using A Combination Of Binomial And Hypergeometric Randomized Responses By Direct And Inverse Mechanism," Statistics in Transition New Series, Polish Statistical Association, vol. 18(2), pages 193-210, June.
    2. Dihidar Kajal & Bhattacharya Manjima, 2017. "Estimating Sensitive Population Proportion Using a Combination of Binomial and Hypergeometric Randomized Responses by Direct and Inverse Mechanism," Statistics in Transition New Series, Statistics Poland, vol. 18(2), pages 193-210, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:2:p:302-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.